Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 242: 116014, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367517

RESUMO

This study aimed to investigate the absorption of alkaloids from Phellodendri chinensis Cortex (PC) by human renal tubular epithelial cells (HK-2). Cellular uptake and affinity ultrafiltration assays were employed to determine the alkaloid uptake pathway in HK-2 cells. Stemming from the hypothesis that salt-water processed PC introduces these alkaloids into the kidney at a cellular level, this research focused on different processed products of PC that are tailored for renal targeting. Utilizing the UPLC-QqQ-MS method, we quantified variations in the uptake capacity of phellodendrine, magnoflorine, jatrorrhizine, berberrubine, and berberine from raw Phellodendri chinensis Cortex (RPC), salt-water processed Phellodendri chinensis Cortex (SPC), and wine processed Phellodendri chinensis Cortex (WPC) in HK-2 cells. This study also tracked the concentration changes of these five alkaloids in HK-2 cells during the administration phase. Further, we evaluated the influence of two inhibitors on the absorption of these five alkaloids from PC and its processed products into HK-2 cells: the organic anion transporters (OATs) inhibitor-probenecid (PRO), and the organic cationic transporters (OCTs) inhibitor-tetraethylammonium chloride (TEAC). A pivotal component of this research was an investigation into the effects of PC and its processed products on the expression levels of OCT2, OAT1, and OAT3 proteins in HK-2 cells, facilitated by Western blot analysis. Finally, we appraised the binding affinity of PC's alkaloids to OCT2, OAT1, and OAT3 proteins using an ultrafiltration centrifugation technique. The uptake of different processed products of PC by HK-2 cells showed the following trend: SPC group > RPC group > WPC group. When considering inhibitor uptake in HK-2 cells, the group treated with PRO (an OATs inhibitor) demonstrated a higher uptake than the group treated with TEAC (an OCTs inhibitor). It was observed that different processed products of PC elevated the expression of OCT2 and OAT1 proteins in HK-2 cells. Specifically, both the SPC and berberrubine groups displayed enhanced expression of these proteins, with a marked increase noted for OCT2. Through affinity ultrafiltration assays, it was determined that the binding affinity of alkaloids from different processed products of PC to OCT2 and OAT1 significantly exceeded that to OAT3. These results indicate that PC-derived alkaloids are absorbed by HK-2 cells, predominantly through transport mechanisms mediated by OCT2 and OAT1, with OCT2 serving as the dominant transporter. The higher intake of alkaloids in SPC group can likely be linked to the amplified activity of kidney uptake transporters.


Assuntos
Alcaloides , Humanos , Alcaloides/metabolismo , Transporte Biológico , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Células Epiteliais/metabolismo , Água
2.
Sensors (Basel) ; 23(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37050709

RESUMO

Fiber-optic refractive index (RI) sensors based on wavelength-shift-based interrogation continue to present a challenge in achieving high sensitivity for a wide detection range. In this paper, we propose a sensor for determining the RI of liquids based on femtosecond laser (fs-laser) writing of a dual-side polished singlemode-multimode-singlemode (SMS) fiber. The proposed sensor can determine the RI value of a surrounding liquid by detecting the dip wavelength in the transmission spectrum of the light propagating through the sensing area. The high RI sensitivity is attributed to the increased interaction area established by the fs-laser, which creates hydrophilic surfaces and maintains the wide detection range of the SMS structure. The results of the wavelength-shift-based interrogation reveal that the fabricated device exhibited a high sensitivity of 161.40 nm per refractive index unit (RIU) over a wide RI detection range of 0.062 RIU. The proposed device has high processing accuracy and a simple manufacturing process. Hence, it has the potential to be used as a lab-on-fiber sensing platform in chemical and biotechnological applications.

3.
Nanomaterials (Basel) ; 13(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985923

RESUMO

Three-dimensional (3D) graphene (Gr) has been successfully grown on a patterned sapphire substrate (PSS) with very low mismatch between Gr and the sapphire nanostructure through metal-catalyst-assisted chemical vapor deposition (CVD). However, the transfer of the 3D Gr film without compromising the structural integrity of Gr is challenging because of the low etching rate of PSS. For easy and high-quality transfer of 3D Gr, we propose to coat a transfer-support layer (TSL) on PSS before direct CVD growth of 3D Gr. The TSL is directly deposited on PSS by atomic layer deposition without causing any structural changes in the substrate, as verified through atomic force microscopy (AFM). Few-layer 3D Gr is conformally produced along the surface of the TSL/PSS and successfully transferred onto a flexible substrate through wet-etching transfer, as confirmed by scanning electron microscopy, AFM, and Raman spectroscopy studies. We also present the fabrication of a sensitive and flexible surface-enhanced Raman scattering sensor based on 3D Gr on PMMA with high detection performance for low concentrations of R6G (10-9 M). The proposed transfer method with TSL is expected to broaden the use of 3D graphene in next-generation device applications.

4.
ACS Appl Mater Interfaces ; 14(34): 39240-39248, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35993967

RESUMO

The conventional nanoscale anti-counterfeiting scheme, exhibiting limited encoding capacity, faces growing challenges of being falsified with the advent of advanced high-resolution equipment. In this study, we propose a multilevel anti-counterfeiting device based on a femtosecond laser (fs-laser) treated plasmonic gold nanocluster/graphene (AuNC/Gr) hybrid structure integrated with a resonant cavity. The covert structural features encoded in random colored patterns, optical reflection spectra, and Raman spectra constitute three classes of anti-counterfeiting signatures, which originate from the AuNC-covered Gr, which initiates plasmonic and thermal couplings. The attendant inverted thermal distribution is presumed to confine the structural features to the AuNC-Gr interface while leaving no detectable traces on the surface of AuNC/Gr even under advanced high-resolution equipment. Therefore, the proposed approach achieves multilevel anti-counterfeiting accomplishing physically unclonable functions in the form of random colored patterns, reflection spectra, and Raman spectra. As the first report for realizing remarkable optical modulation (i.e., random colored patterns) without any surface trace or damage via fs-laser-AuNC/Gr interaction, our study also discloses the outstanding performance of Gr in fs-laser-induced optothermoplasmonic lithography on near-percolation metal films. Simultaneously, the demonstrated fs-laser-processed plasmonic hybrid structure in conjunction with a resonant cavity is anticipated to expand the encoding capabilities for nanoscale anti-counterfeiting while avoiding the risk of being imitated because of the covert structural features.

5.
Pathol Res Pract ; 233: 153879, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35405623

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a familiar malignancy accompanied by higher morbidity and mortality. The deubiquitination enzyme USP20 has been discovered to be one key factor in several cancers progression. SOX4 is a critical transcription factor to regulate the expression of various genes, and participates into the occurrence and progression of cancers. In this study, it was aimed to illustrate the role of USP20 and the regulatory relationship between USP20 and SOX4 in CRC. METHODS: The protein expressions of USP20, SOX4, E-cadherin, N-cadherin, Snail and slug were tested through western blot. The cell proliferation ability was verified through CCK-8 assay. The migration and invasion abilities were detected through Transwell assay. The mRNA expression of SOX4 was confirmed through RT-qPCR. The interaction between USP20 and SOX4 was notarized through Co-IP assay. RESULT: Our study demonstrated that USP20 displayed higher expression, and facilitated CRC progression through regulating cell proliferation, migration, invasion and EMT process markers. USP20 was found to modulate SOX4 protein expression. Next, it was verified that USP20 regulated SOX4 degradation through deubiquitination. Finally, through rescue assays, we revealed that USP20 mediated SOX4 expression to accelerate CRC progression. CONCLUSIONS: In this study, USP20 regulated the stability of EMT transcription factor SOX4 and aggravated colorectal cancer metastasis. This finding might highlight the function of USP20 in the treatment of CRC.


Assuntos
Neoplasias Colorretais , Fatores de Transcrição , Western Blotting , Proliferação de Células , Neoplasias Colorretais/genética , Regulação da Expressão Gênica , Humanos , Fatores de Transcrição SOXC/genética , Ubiquitina Tiolesterase
6.
Opt Express ; 28(26): 39552-39562, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379501

RESUMO

A light-driven diffraction grating incorporating two grating patterns with different pitches atop a photothermal actuator (PTA) has been proposed. It is based on graphene oxide/reduced graphene oxide (GO/rGO) induced via femtosecond laser direct writing (FsLDW). The rGO, its controllable linewidth, and transmission support the formation of grating patterns; its noticeably small coefficient of thermal expansion (CTE), good flexibility, and thermal conductivity enable the fabrication of a PTA consisting of a polydimethylsiloxane layer with a relatively large CTE. Under different intensities of light stimuli, diffraction patterns can be efficiently tailored according to different gratings, which are selectively addressed by incident light beam hinging on the bending of the PTA. This is the first demonstration of combining gratings and PTA, wherein the GO plays the role of a bridge. The light-driven mechanism enables the contactless operation of the proposed device, which can be efficiently induced via FsLDW. The diffraction angle could be changed between 2° and 6° horizontally, and the deviation of side lobes from the main lobe could be altered vertically in a continuous range. The proposed device may provide powerful support for activating dynamic diffraction devices in photothermally contactless schemes.

7.
Sensors (Basel) ; 19(11)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151242

RESUMO

A fiber reshaping-based refractive index (RI) sensor is proposed relying on both optical intensity variation and wavelength shift. The objective of this study is to completely reshape the core and to ultimately mimic a coreless fiber, thereby creating a highly efficient multimode interference (MMI) coupler. Thus, propagation modes are permitted to leak out into the cladding and eventually escape out of the fiber, depending on the surrounding environment. Two interrogation mechanisms based on both the intensity variation and wavelength shift are employed to investigate the performance of the RI sensor, with the assistance of leaky-mode and MMI theories. By monitoring the output intensity difference and the wavelength shift, the proposed RI sensor exhibits high average sensitivities of 185 dB/RIU and 3912 nm/RIU in a broad range from 1.339 to 1.443, respectively. The operating range and sensitivity can be adjusted by controlling the interaction length, which is appealing for a wide range of applications in industry and bioscience research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...