Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 670: 348-356, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763030

RESUMO

The depressed directional separation of photogenerated carriers and weak CO2 adsorption/activation activity are the main factors hampering the development of artificial photosynthesis. Herein, Na ions are embedded in graphitic carbon nitride (g-C3N4) to achieve directional migration of the photogenerated electrons to Na sites, while the electron-rich Na sites enhance CO2 adsorption and activation. Na/g-C3N4 (NaCN) shows improved photocatalytic reduction activity of CO2 to CO and CH4, and under simulated sunlight irradiation, the CO yield of NaCN synthesized by embedding Na at 550°C (NaCN-550) is 371.2 µmol g-1 h-1, which is 58.9 times more than that of the monomer g-C3N4. By means of theoretical calculations and experiments including in situ fourier transform infrared spectroscopy, the mechanism is investigated. This strategy which improves carrier separation and reduces the energy barrier at the same time is important to the development of artificial photosynthesis.

2.
J Colloid Interface Sci ; 657: 811-818, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38081115

RESUMO

Electrochemical water splitting is one of the most active areas of energy research, yet the benchmark electrocatalysts used for this area are based on expensive noble metals and transition metals, thus mainly reactions in alkaline solution. MOFs and halide perovskite are novel electrochemical catalysts but unstable in water basically. Here we report a study on composites of (NH2)-MIL-53(Al) MOFs and CBB halide perovskite (Cs3Bi2Br9), which exhibit obvious activity for overall electrochemical water splitting for long-term stability with little deactivation after 10 h in all pH solutions.

3.
ChemSusChem ; 16(19): e202300666, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37505451

RESUMO

In this work, α-Fe2 O3 photoanode consisted of (110)-oriented α-Fe2 O3 single crystals were synthesized by a facile hydrothermal method. By using particular additive (C4 MimBF4 ) and regulation of hydrothermal reaction time, the Fe-25 consisted of a single-layer of highly crystalline (110)-oriented crystals with fewer grain boundaries, which was vertically grown on the substrate. As a result, the charge separation efficiency and photoelectrochemical (PEC) performance of Fe-25A (Fe-25 after dehydration treatment) have been greatly improved. Fe-25A yields a photocurrent of 1.34 mA cm-2 (1.23 V vs RHE) and an incident photon-to-current conversion efficiency (IPCE) of 31.95 % (380 nm). With the assistance of cobalt-phosphate water oxidation catalyst (Co-Pi), the PEC performance could be further improved by enhancing the holes transfer at electrode/electrolyte interface and inhibiting surface recombination. Fe-25A/Co-Pi yields a photocurrent of 2.67 mA cm-2 (1.23 V vs RHE) and IPCE value of 50.8 % (380 nm), which is 3.67 times and 2.39 times as that of Fe-2A/Co-Pi. Our work provides a simple method to fabricate highly efficient Fe2 O3 photoanodes consist of characteristic (110)-oriented single crystals with high crystallinity and high quality interface contact to enhance charge separation efficiencies.

4.
Toxics ; 11(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36668812

RESUMO

Microplastics (MPs) are plastic fragments with particle sizes smaller than 5 mm that have potentially harmful effects on ecosystems and human health. The soil environment is not only the source but also the sink of MPs. Thus, it is necessary to fully understand the pollution and distribution of MPs in soils. In this study, Qinghai Province, northeast of the Qinghai-Tibet Plateau, was selected as the research area, and 22 soil samples were collected and analyzed to study the levels and distribution characteristics of MPs in grassland soils. MPs were obtained from the soils by using density separation, and a laser confocal micro Raman spectrometer was used for MP identification. The results showed that MPs were detected in all of the soil samples. The total abundances of MPs ranged from 1125 to 1329 items/kg, with a mean abundance of 1202 items/kg. Various types, shapes, sizes, and colors of MPs were observed. Polyethylene terephthalate (PET) was the dominant polymer in all the grassland soil samples. The size range of 10-50 µm accounted for 50% of all identified MPs. Pellets were the dominant MP shape, and colored MPs accounted for 64% of all MPs. The results revealed the presence of large quantities of MPs in the grassland soils of remote areas as well. This study can act as a reference for further studies of MPs in terrestrial systems. At the end of the paper, the prospects and suggestions for pollution control by soil MPs are given.

5.
Front Oncol ; 12: 877369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646692

RESUMO

Ovarian cancer (OV) is a complex gynecological disease, and its molecular characteristics are not clear. In this study, the molecular characteristics of OV subtypes based on metabolic genes were explored through the comprehensive analysis of genomic data. A set of transcriptome data of 2752 known metabolic genes was used as a seed for performing non negative matrix factorization (NMF) clustering. Three subtypes of OV (C1, C2 and C3) were found in analysis. The proportion of various immune cells in C1 was higher than that in C2 and C3 subtypes. The expression level of immune checkpoint genes TNFRSF9 in C1 was higher than that of other subtypes. The activation scores of cell cycle, RTK-RAS, Wnt and angiogenesis pathway and ESTIMATE immune scores in C1 group were higher than those in C2 and C3 groups. In the validation set, grade was significantly correlated with OV subtype C1. Functional analysis showed that the extracellular matrix related items in C1 subtype were significantly different from other subtypes. Drug sensitivity analysis showed that C2 subtype was more sensitive to immunotherapy. Survival analysis of differential genes showed that the expression of PXDN and CXCL11 was significantly correlated with survival. The results of tissue microarray immunohistochemistry showed that the expression of PXDN was significantly correlated with tumor size and pathological grade. Based on the genomics of metabolic genes, a new OV typing method was developed, which improved our understanding of the molecular characteristics of human OV.

6.
Microbiol Spectr ; 10(4): e0104522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35708336

RESUMO

The persistence of residual bacteria, particularly Enterococcus faecalis, contributes to refractory periapical periodontitis, which still lacks effective therapy. The role of receptor-interacting protein kinase 3 (RIPK3)- and mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis, a highly proinflammatory form of regulated cell death, has recently drawn much attention. However, the role of necroptosis in the pathogenesis of refractory periapical periodontitis remains unclear. We investigated whether the RIPK3/MLKL signaling pathway was activated in periapical lesion specimens obtained from patients diagnosed with refractory periapical periodontitis. RIPK3-deficient mice were then used to determine the role of necroptosis under this condition in vivo. We found that the phosphorylation levels of RIPK3 and MLKL were elevated in periapical lesion specimens of patients with refractory periapical periodontitis. In addition, necroptosis was induced in an E. faecalis-infected refractory periapical periodontitis mouse model, in which inhibition of necroptosis by RIPK3 deficiency could markedly alleviate inflammation and bone destruction. Moreover, double-labeling immunofluorescence suggested that macrophage necroptosis may be involved in the development of refractory periapical periodontitis. Then, we established an in vitro macrophage infection model with E. faecalis. E. faecalis infection was found to induce necroptotic cell death in macrophages through the RIPK3/MLKL signaling pathway, which was markedly alleviated by the RIPK3- or MLKL-specific inhibitor. Our study revealed that RIPK3/MLKL-mediated macrophage necroptosis contributes to the development of refractory periapical periodontitis and suggests that inhibitors or treatments targeting necroptosis represent a plausible strategy for the management of refractory periapical periodontitis. IMPORTANCE Oral infectious diseases represent a major neglected global population health challenge, imposing an increasing burden on public health and economy. Refractory apical periodontitis (RAP), mainly caused by Enterococcus faecalis, is a representative oral infectious disease with considerable therapeutic challenges. The interplay between E. faecalis and the host often leads to the activation of programmed cell death. This study identifies an important role of macrophage necroptosis induced by E. faecalis in the pathogenesis of RAP. Manipulating RIPK3/MLKL-mediated necroptosis may represent novel therapeutic targets, not only for RAP but also for other E. faecalis-associated infectious diseases.


Assuntos
Doenças Transmissíveis , Periodontite Periapical , Animais , Enterococcus faecalis , Macrófagos/metabolismo , Camundongos , Necroptose , Proteínas Quinases/metabolismo
7.
Small ; 18(24): e2201269, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567335

RESUMO

Direct ammonia (NH3 ) synthesis from water and atmospheric nitrogen using sunlight provides an energy-sustainable and carbon-neutral alternative to the Haber-Bosch process. However, the development of such a route with high performance is impeded by the lack of effective charge transfer and abundant active sites to initiate the nitrogen reduction reaction (NRR). Here, the authors report efficient plasmon-induced photoelectrochemical (PEC) NH3 synthesis on the hierarchical free-standing Au/Kx MoO3 /Mo/Kx MoO3 /Au nanoarrays. Endowed with energetically hot electrons and catalytically active sites, the plasmonic nanoarrays exhibit an efficient PEC NH3 synthesis rate of 9.6 µg cm-2 h-1 under visible light irradiation, which is among the highest PEC NRR systems. This work demonstrates the rationally designed plasmonic nanoarrays for highly efficient NH3 synthesis, which paves a new path for PEC catalytic reactions driven by surface plasmons and future monolithic PEC devices for direct artificial photosynthesis.


Assuntos
Amônia , Elétrons , Catálise , Domínio Catalítico , Nitrogênio
8.
Adv Mater ; 34(27): e2201594, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35488707

RESUMO

Utilizing a photoelectrochemical (PEC) fuel cell to replace difficult water oxidation with facile oxidation of organic wastes is regarded as an effective method to improve the H2 production efficiency. However, in most reported PEC fuel cells, their PEC activities are still low and the energy in organic fuels cannot be effectively utilized. Here, a unique BiVO4 PEC fuel cell is successfully developed by utilizing the low-cost biomass, tartaric acid, as an organic fuel. Thanks to the strong complexation between BiVO4 and tartaric acid, a bridge for the charge and energy transfer is successfully constructed, which not only improves the photoelectric conversion efficiency of BiVO4 , but also effectively converts the chemical energy of biomass into H2 . Remarkably, under AM1.5G illumination, the optimal nanoporous BiVO4 photoanode exhibits a high current density of 13.54 mA cm-2 at 1.23 V vs reversible hydrogen electrode (RHE) for H2 production, which is higher than that of previously reported PEC water splitting systems or PEC fuel cell systems. This work opens a new path for solving the low PEC H2 production efficiency and provides a new idea for improving the performances and energy conversion efficiency in traditional PEC fuel cells.

9.
Front Immunol ; 12: 789610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970269

RESUMO

The oral microbiome, one of the most complex and intensive microbial ecosystems in the human body, comprises bacteria, archaea, fungi, protozoa, and viruses. Dysbiosis of the oral microbiome is the initiating factor that leads to oral infectious diseases. Infection is a sophisticated biological process involving interplay between the pathogen and the host, which often leads to activation of programmed cell death. Studies suggest that pyroptosis, apoptosis, and necroptosis are involved in multiple oral infectious diseases. Further understanding of crosstalk between cell death pathways has led to pyroptosis, apoptosis, and necroptosis being integrated into a single term: PANoptosis. PANoptosis is a multifaceted agent of the immune response that has important pathophysiological relevance to infectious diseases, autoimmunity, and cancer. As such, it plays an important role in innate immune cells that detect and eliminate intracellular pathogens. In addition to the classical model of influenza virus-infected and Yersinia-infected macrophages, other studies have expanded the scope of PANoptosis to include other microorganisms, as well as potential roles in cell types other than macrophages. In this review, we will summarize the pathophysiological mechanisms underlying inflammation and tissue destruction caused by oral pathogens. We present an overview of different pathogens that may induce activation of PANoptosis, along with the functional consequences of PANoptosis in the context of oral infectious diseases. To advance our understanding of immunology, we also explore the strategies used by microbes that enable immune evasion and replication within host cells. Improved understanding of the interplay between the host and pathogen through PANoptosis will direct development of therapeutic strategies that target oral infectious diseases.


Assuntos
Apoptose , Doenças Transmissíveis/patologia , Doenças da Boca/patologia , Boca/patologia , Necroptose , Animais , Peptídeos Antimicrobianos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/metabolismo , Disbiose , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Microbiota , Boca/imunologia , Boca/metabolismo , Doenças da Boca/imunologia , Doenças da Boca/metabolismo , Piroptose , Transdução de Sinais
10.
Nanomaterials (Basel) ; 11(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34578723

RESUMO

Monoclinic bismuth vanadate (BiVO4) is an attractive material with which to fabricate photoanodes due to its suitable band structure and excellent photoelectrochemical (PEC) performance. However, the poor PEC stability originating from its severe photo-corrosion greatly restricts its practical applications. In this paper, pristine and Mo doped BiVO4 ceramics were prepared using the spark plasma sintering (SPS) method, and their photoelectrochemical properties as photoanodes were investigated. The as-prepared 1% Mo doped BiVO4 ceramic (Mo-BVO (C)) photoanode exhibited enhanced PEC stability compared to 1% Mo doped BiVO4 films on fluorine doped Tin Oxide (FTO) coated glass substrates (Mo-BVO). Mo-BVO (C) exhibited a photocurrent density of 0.54 mA/cm2 and remained stable for 10 h at 1.23 V vs. reversible hydrogen electrode (RHE), while the photocurrent density of the Mo-BVO decreased from 0.66 mA/cm2 to 0.11 mA/cm2 at 1.23 V vs. RHE in 4 h. The experimental results indicated that the enhanced PEC stability of the Mo-BVO (C) could be attributed to its higher crystallinity, which could effectively inhibit the dissociation of vanadium in BiVO4 during the PEC process. This work may illustrate a novel ceramic design for the improvement of the stability of BiVO4 photoanodes, and might provide a general strategy for the improvement of the PEC stability of metal oxide photoanodes.

11.
Front Oncol ; 11: 705903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235089

RESUMO

Epigenetics, including DNA methylation, histone modification, and noncoding RNA regulation, are physiological regulatory changes that affect gene expression without modifying the DNA sequence. Although epigenetic disorders are considered a sign of cell carcinogenesis and malignant events that affect tumor progression and drug resistance, in view of the reversible nature of epigenetic modifications, clinicians believe that associated mechanisms can be a key target for cancer prevention and treatment. In contrast, epidemiological and preclinical studies indicated that the epigenome is constantly reprogrammed by intake of natural organic compounds and the environment, suggesting the possibility of utilizing natural compounds to influence epigenetics in cancer therapy. Flavonoids, although not synthesized in the human body, can be consumed daily and are common in medicinal plants, vegetables, fruits, and tea. Recently, numerous reports provided evidence for the regulation of cancer epigenetics by flavonoids. Considering their origin in natural and food sources, few side effects, and remarkable biological activity, the epigenetic antitumor effects of flavonoids warrant further investigation. In this article, we summarized and analyzed the multi-dimensional epigenetic effects of all 6 subtypes of flavonoids (including flavonols, flavones, isoflavones, flavanones, flavanols, and anthocyanidin) in different cancer types. Additionally, our report also provides new insights and a promising direction for future research and development of flavonoids in tumor prevention and treatment via epigenetic modification, in order to realize their potential as cancer therapeutic agents.

12.
Trials ; 22(1): 436, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229752

RESUMO

BACKGROUND: Dental pulp necrosis, a common health problem, is traditionally treated with root canal therapy; however, it fails in restoring the vitality of damaged pulp. Most studies regarding regenerative endodontic therapy (RET) are limited to the treatment of immature necrotic teeth. Given that injectable platelet-rich fibrin (i-PRF) has shown great potential in regenerative medicine as a novel platelet concentration, this study is designed to explore whether i-PRF can serve as a biological scaffold, extending the indications for RET and improving the clinical feasibility of RET in mature permanent teeth with pulp necrosis. METHODS: This is a randomised, double-blind, controlled, multicentre clinical trial designed to evaluate the clinical feasibility of RET for mature permanent teeth with pulp necrosis and to compare the efficacy of i-PRF and blood clots as scaffolds in RET. A total of 346 patients will be recruited from three centres and randomised at an allocation ratio of 1:1 to receive RET with either a blood clot or i-PRF. The changes in subjective symptoms, clinical examinations, and imaging examinations will be tracked longitudinally for a period of 24 months. The primary outcome is the success rate of RET after 24 months. The secondary outcome is the change in pulp vitality measured via thermal and electric pulp tests. In addition, the incidence of adverse events such as discolouration, reinfection, and root resorption will be recorded for a safety evaluation. DISCUSSION: This study will evaluate the clinical feasibility of RET in mature permanent teeth with pulp necrosis, providing information regarding the efficacy, benefits, and safety of RET with i-PRF. These results may contribute to changes in the treatment of pulp necrosis in mature permanent teeth and reveal the potential of i-PRF as a novel biological scaffold for RET. TRIAL REGISTRATION: ClinicalTrials.gov NCT04313010 . Registered on 19 March 2020.


Assuntos
Fibrina Rica em Plaquetas , Endodontia Regenerativa , Necrose da Polpa Dentária/diagnóstico por imagem , Necrose da Polpa Dentária/terapia , Humanos , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Regeneração , Tratamento do Canal Radicular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...