Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Infect Dis ; 24(1): 793, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112975

RESUMO

BACKGROUND: Sepsis is a life-threatening condition that is characterized by multiorgan dysfunction and caused by dysregulated cytokine networks, which are closely associated with sepsis progression and outcomes. However, currently available treatment strategies that target cytokines have failed. Thus, this study aimed to investigate the interplay between genetically predicted circulating concentrations of cytokines and the outcomes of sepsis and to identify potential targets for sepsis treatment. METHODS: Data related to 35 circulating cytokines in 31,112 individuals (including 11,643 patients with sepsis) were included in genome-wide association studies (GWASs) from the UK Biobank and FinnGen consortia. A bidirectional two-sample Mendelian randomization (MR) analysis was performed using single nucleotide polymorphisms (SNPs) to evaluate the causal effects of circulating cytokines on sepsis outcomes and other cytokines. RESULTS: A total of 35 inflammatory cytokine genes were identified in the GWASs, and 11 cytokines, including Interleukin-1 receptor antagonist (IL-1ra), macrophage inflammatory protein 1 (MIP1α), IL-16, et al., were associated with sepsis outcome pairs according to the selection criteria of the cis-pQTL instrument. Multiple MR methods verified that genetically predicted high circulating levels of IL-1ra or MIP1α were negatively correlated with genetic susceptibility to risk of sepsis, including sepsis (28-day mortality), septicaemia, streptococcal and pneumonia-derived septicaemia (P ≤ 0.01). Furthermore, genetic susceptibility of sepsis outcomes except sepsis (28-day mortality) markedly associated with the circulating levels of five cytokines, including active plasminogen activator inhibitor (PAI), interleukin 7 (IL-7), tumour necrosis factor alpha (TNF-α), beta nerve growth factor (NGF-ß), hepatic growth factor (HGF) (P < 0.05). Finally, we observed that the causal interaction network between MIP1α or IL-1ra and other cytokines (P < 0.05). CONCLUSIONS: This comprehensive MR analysis provides insights into the potential causal mechanisms that link key cytokines, particularly MIP1α, with risk of sepsis, and the findings suggest that targeting MIP1α may be a potential strategy for preventing sepsis.


Assuntos
Citocinas , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Sepse , Humanos , Sepse/genética , Citocinas/sangue , Citocinas/genética , Masculino , Feminino , Predisposição Genética para Doença , Pessoa de Meia-Idade
2.
Int Immunopharmacol ; 139: 112664, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39008937

RESUMO

PANoptosis is a newly discovered type of cell death characterized by pyroptosis, apoptosis and/or necroptosis and has been implicated in the inflammatory response. Piezo1 is a mechanosensitive ion channel that plays important roles in physiological development and various diseases. However, whether cardiomyocytes undergo PANoptosis during myocardial ischaemia/reperfusion (I/R) injury and the role of Piezo1 in this process remain largely unexplored. In this study, our results revealed that the expression levels of the main components of the PANoptosome, including caspase-8, caspase-3, NLRP3, caspase-1, GSDMD, RIPK1, RIPK3 and MLKL, were significantly upregulated in I/R heart tissues over time, indicating the occurrence of PANoptosis in I/R hearts. Accordingly, Piezo1 expression was significantly upregulated in I/R-injured hearts and hypoxia/reoxygenation (H/R)-treated cardiomyocytes. In contrast, pharmacological inhibition of Piezo1 by the inhibitor GsMTx4 in mice markedly attenuated the I/R-mediated decline in cardiac contractile function and increases in infarct size, apoptosis, oxidative stress and inflammation accompanied by the inhibition of PANoptosis-related mediators in I/R hearts. Consistently, the effects of Piezo1 on calcium influx and PANoptosis were further verified by GsMTx4 and Piezo1 activator Yoda1 in H/R-treated cardiomyocytes in vitro. Moreover, caspase-8 rather than calcium influx was required for H/R-induced PANoptosis in vitro. Mechanistically, Piezo1 interacts with caspase-8, a key initial activator of the PANoptosome complex, which subsequently activates cardiomyocyte PANoptosis, leading to cardiac dysfunction. In summary, these data suggest that Piezo1 is a new cardiac mechanosensor that promotes cardiac I/R injury possibly through the caspase-8-mediated activation of cardiomyocyte PANoptosis and highlight that Piezo1 may represent a new target for treating ischaemic heart disease.


Assuntos
Caspase 8 , Canais Iônicos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Caspase 8/metabolismo , Caspase 8/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos , Masculino , Necroptose , Apoptose , Oligopeptídeos/farmacologia , Venenos de Aranha , Peptídeos e Proteínas de Sinalização Intercelular
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167048, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38296117

RESUMO

Persistent pressure overload commonly leads to pathological cardiac hypertrophy and remodeling, ultimately leading to heart failure (HF). Cardiac remodeling is associated with the involvement of immune cells and the inflammatory response in pathogenesis. The macrophage-1 antigen (Mac-1) is specifically expressed on leukocytes and regulates their migration and polarization. Nonetheless, the involvement of Mac-1 in cardiac remodeling and HF caused by pressure overload has not been determined. The Mac-1-knockout (KO) and wild-type (WT) mice were subjected to transverse aortic constriction (TAC) for 6 weeks. Echocardiography and pressure-volume loop assessments were used to evaluate cardiac function, and cardiac remodeling and macrophage infiltration and polarization were estimated by histopathology and molecular techniques. The findings of our study demonstrated that Mac-1 expression was markedly increased in hearts subjected to TAC treatment. Moreover, compared with WT mice, Mac-1-KO mice exhibited dramatically ameliorated TAC-induced cardiac dysfunction, hypertrophy, fibrosis, oxidative stress and apoptosis. The potential positive impacts may be linked to the inhibition of macrophage infiltration and M1 polarization via reductions in NF-kB and STAT1 expression and upregulation of STAT6. In conclusion, this research reveals a new function of Mac-1 deficiency in reducing pathological cardiac remodeling and HF caused by pressure overload. Additionally, inhibiting Mac-1 could be a potential treatment option for patients with HF in a clinical setting.


Assuntos
Insuficiência Cardíaca , Antígeno de Macrófago 1 , Humanos , Camundongos , Animais , Antígeno de Macrófago 1/metabolismo , Remodelação Ventricular/genética , Transdução de Sinais , Insuficiência Cardíaca/metabolismo , Cardiomegalia/metabolismo , Camundongos Knockout , Macrófagos/metabolismo
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 23(5): 523-7, 2006 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-17029200

RESUMO

OBJECTIVE: To investigate the association of polymorphisms in the apolipoprotein B gene (APOB) 3'variable number of tandem repeat with natural longevity in the Xinjiang Uighur nationality people. METHODS: Totally 191 healthy individuals over 90 years and 53 individuals aged 65-70 years were recruited among Xinjiang Uighur population, the nationality, gender and living area were matched. Genotyping was performed using polymerase chain reaction-sequence specific primer(PCR-SSP) and PCR-sequencing. RESULTS: Fourteen alleles were found in the Xinjiang Uighur nationality population. The frequency of HVE36 and HVE42 in the natural longevity group were significantly higher than that in the control group (both P<0.05) and HVE44, HVE46, HVE48 and HVE58 were only found in the natural longevity group. However, the frequency of HVE26, HVE30 and HVE34 were markedly lower in the natural longevity group compared to the control group. Logistic regression analyses revealed that allele L and the genotypes LL were positively associated with age, whereas the allele S and genotype SS were negatively associated with age (both P<0.05). Each allele consists of 15 bp tandem repeats with rich-AT by PCR-sequencing. CONCLUSION: These results indicate that the S allele, and SS genotype are frail factors in China Uighur natural longevity people, whereas allele L and genotypes LL are protective factors.


Assuntos
Apolipoproteínas B/genética , Longevidade/genética , Repetições Minissatélites/genética , Polimorfismo Genético/genética , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , China , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA