Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Inflammation ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700791

RESUMO

Periodontitis, characterized by progressive alveolar bone destruction, leads to the loss of attachment and stability of the affected teeth. Macrophages, especially the proinflammatory M1 subtype, are key in periodontitis pathogenesis, driving the disease's inflammatory and destructive processes. Despite existing insight into their involvement, comprehensive understanding of the underlying molecular mechanisms remains limited. TRPV1 is a non-selective cation channel protein and is known to regulate cellular function and homeostasis in macrophages. Our research objective was to investigate the impact of TRPV1 on the proinflammatory attributes of M1 macrophages in periodontal tissues, exploring potential mechanistic pathways. A mouse model of periodontitis was established using Porphyromonas gingivalis inoculation and ligature application around the maxillary second molar. Immunohistological analysis showed a significant reduction in macrophage TRPV1 expression in periodontitis-induced mice. Treatment with capsaicin, a TRPV1 agonist, was observed to effectively elevate TRPV1 expression in these macrophages. Furthermore, micro-computed tomography analysis revealed a marked decrease in alveolar bone resorption in the capsaicin -treated group, compared with vehicle and healthy control groups. Our in vitro findings show that capsaicin treatment successfully attenuated LPS-induced TNF-α and IL-6 production in macrophages, mediated through NRF2 activation, consequently reducing intracellular ROS levels. These findings suggest that TRPV1 agonists, through modulating M1 macrophage activity and up-regulating TRPV1, could be a novel therapeutic approach in periodontal disease management.

2.
Acad Radiol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38755068

RESUMO

RATIONALE AND OBJECTIVES: The mechanism of comorbidity between alcohol dependence and depressive disorders are not well understood. This study investigated differences in the brain function of alcohol-dependent patients with and without depression by performing functional connectivity analysis using resting-state functional magnetic resonance imaging. MATERIALS AND METHODS: A total of 29 alcohol-dependent patients with depression, 31 alcohol-dependent patients without depression and 31 healthy control subjects were included in this study. The resting-state functional connectivity between the amygdala and the whole brain was compared among the three groups. Additionally, we examined the correlation between functional connectivity values in significantly different brain regions and levels of alcohol dependence and depression. RESULTS: The resting-state functional connectivity between the left amygdala and the right caudate nucleus was decreased in alcohol-dependent patients. Additionally, the resting-state functional connectivity of the right amygdala with the right caudate nucleus, right transverse temporal gyrus, right temporal pole: superior temporal gyrus were also decreased. In alcohol-dependent patients with depression, not only was functional connectivity between the above brain regions significantly decreased, but so was functional connectivity between the right amygdala and the left middle temporal gyrus. Also, there was no significant correlation between the resting-state functional connectivity values in statistically significant brain regions and the levels of alcohol dependence and depression. CONCLUSION: The impairment of the functional connectivity of the amygdala with caudate nucleus and partial temporal lobe may be involved in the neural mechanism of alcohol dependence comorbidity depressive disorders.

3.
J Am Chem Soc ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602012

RESUMO

Zeolitic imidazolate frameworks (ZIFs) hold great promise in carbon capture, owing to their structural designability and functional porosity. However, intrinsic linker dynamics limit their pressure-swing adsorption application to biogas upgrading and methane purification. Recently, a functionality-locking strategy has shown feasibility in suppressing such dynamics. Still, a trade-off between structural rigidity and uptake capacity remains a key challenge for optimizing their high-pressure CO2/CH4 separation performance. Here, we report a sequential structural locking (SSL) strategy for enhancing the CO2 capture capacity and CH4 purification productivity in dynamic ZIFs (dynaZIFs). Specifically, we isolated multiple functionality-locked phases, ZIF-78-lt, -ht1, and -ht2, by activation at 50, 160, and 210 °C, respectively. We observed multiple-level locking through gas adsorption and powder X-ray diffraction. We uncovered an SSL mechanism dominated by linker-linker π-π interactions that transit to C-H···O hydrogen bonds with binding energies increasing from -0.64 to -2.77 and -5.72 kcal mol-1, respectively, as evidenced by single-crystal X-ray diffraction and density functional theory calculations. Among them, ZIF-78-ht1 exhibits the highest CO2 capture capacity (up to 18.6 mmol g-1) and CH4 purification productivity (up to 7.6 mmol g-1) at 298 K and 30 bar. These findings provide molecular and energetic insights into leveraging framework flexibility through the SSL mechanism to optimize porous materials' separation performance.

4.
J Affect Disord ; 356: 363-370, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615848

RESUMO

BACKGROUND: Previous neuroimaging and pathological studies have found myelin-related abnormalities in bipolar disorder (BD), which prompted the use of magnetic resonance (MR) imaging technology sensitive to neuropathological changes to explore its neuropathological basis. We holistically investigated alterations in myelin within BD patients by inhomogeneous magnetization transfer (ihMT), which is sensitive and specific to myelin content. METHODS: Thirty-one BD and 42 healthy controls (HC) were involved. Four MR metrics, i.e., ihMT ratio (ihMTR), pseudo-quantitative ihMT (qihMT), magnetization transfer ratio and pseudo-quantitative magnetization transfer (qMT), were compared between groups using analysis methods based on whole-brain voxel-level and white matter regions of interest (ROI), respectively. RESULTS: The voxel-wise analysis showed significantly inter-group differences of ihMTR and qihMT in the corpus callosum. The ROI-wise analysis showed that ihMTR, qihMT, and qMT values in BD group were significantly lower than that in HC group in the genu and body of corpus callosum, left anterior limb of the internal capsule, left anterior corona radiate, and bilateral cingulum (p < 0.001). And the qihMT in genu of corpus callosum and right cingulum were negatively correlated with depressive symptoms in BD group. LIMITATIONS: This study is based on cross-sectional data and the sample size is limited. CONCLUSION: These findings suggest the reduced myelin content of anterior midline structure in the bipolar patients, which might be a critical pathophysiological feature of BD.


Assuntos
Transtorno Bipolar , Imageamento por Ressonância Magnética , Bainha de Mielina , Humanos , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Feminino , Masculino , Adulto , Bainha de Mielina/patologia , Pessoa de Meia-Idade , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos de Casos e Controles , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
5.
Nat Commun ; 15(1): 2411, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499604

RESUMO

Installing different chemical entities onto crystalline frameworks with well-defined spatial distributions represents a viable approach to achieve ordered and complex synthetic materials. Herein, a covalent organic framework (COF-305) is constructed from tetrakis(4-aminophenyl)methane and 2,3-dimethoxyterephthalaldehyde, which has the largest unit cell and asymmetric unit among known COFs. The ordered complexity of COF-305 is embodied by nine different stereoisomers of its constituents showing specific sequences on topologically equivalent sites, which can be attributed to its building blocks deviating from their intrinsically preferred simple packing geometries in their molecular crystals to adapt to the framework formation. The insight provided by COF-305 supplements the principle of covalent reticular design from the perspective of non-covalent interactions and opens opportunities for pursuing complex chemical sequences in molecular frameworks.

6.
Adv Healthc Mater ; : e2303709, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431770

RESUMO

The preservation of vital pulps is crucial for maintaining the physiological functions of teeth; however, vital pulp therapy (VPT) of pulpitis teeth remains a substantial challenge due to uncontrolled infection, excessive inflammation, and limited regenerative potential. Current pulp capping agents have restricted effects in the infectious and inflammatory microenvironment. To address this, a multifunctional hydrogel (TGH/DM) with antibacterial, immunomodulatory, and mineralization-promoting effects is designed. The antimicrobial peptide (AMP) and demineralized dentin matrix are incorporated into the hydrogel, achieving sustainable delivery of AMP and a cocktail of growth factors. In vitro results show that TGH/DM could kill endodontic microbiota, ameliorate inflammatory responses of human dental pulp stem cells (hDPSCs), and prompt odontogenic differentiation of inflammatory hDPSCs via activation of peroxisome proliferator-activated receptor gamma. In vivo results suggest that TGH/DM is capable of inducing M2 phenotype transformation of macrophages in mice and fostering the regeneration of the dentin-pulp complex in inflamed pulps of beagle dogs. Overall, this study first proposes the synergistic regulation of AMP and tissue-specific extracellular matrix for the treatment of pulpitis, and the advanced hydrogel provides a facile and effective way for VPT.

7.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38354297

RESUMO

Improving the feeding efficiency of dairy cows is a key component to improve the utilization of land resources and meet the demand for high-quality protein. Advances in genomic methods and omics techniques have made it possible to breed more efficient dairy cows through genomic selection. The aim of this review is to obtain a comprehensive understanding of the biological background of feed efficiency (FE) complex traits in purebred Holstein dairy cows including heritability estimate, and genetic markers, genes, and pathways participating in FE regulation mechanism. Through a literature search, we systematically reviewed the heritability estimation, molecular genetic markers, genes, biomarkers, and pathways of traits related to feeding efficiency in Holstein dairy cows. A meta-analysis based on a random-effects model was performed to combine reported heritability estimates of FE complex. The heritability of residual feed intake, dry matter intake, and energy balance was 0.20, 0.34, and 0.22, respectively, which proved that it was reasonable to include the related traits in the selection breeding program. For molecular genetic markers, a total of 13 single-nucleotide polymorphisms and copy number variance loci, associated genes, and functions were reported to be significant across populations. A total of 169 reported candidate genes were summarized on a large scale, using a higher threshold (adjusted P value < 0.05). Then, the subsequent pathway enrichment of these genes was performed. The important genes reported in the articles were included in a gene list and the gene list was enriched by gene ontology (GO):biological process (BP), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis. Three GO:BP terms and four KEGG terms were statistically significant, which mainly focused on adenosine triphosphate (ATP) synthesis, electron transport chain, and OXPHOS pathway. Among these pathways, involved genes such as ATP5MC2, NDUFA, COX7A2, UQCR, and MMP are particularly important as they were previously reported. Twenty-nine reported biological mechanisms along with involved genes were explained mainly by four biological pathways (insulin-like growth factor axis, lipid metabolism, oxidative phosphorylation pathways, tryptophan metabolism). The information from this study will be useful for future studies of genomic selection breeding and genetic structures influencing animal FE. A better understanding of the underlying biological mechanisms would be beneficial, particularly as it might address genetic antagonism.


A thorough understanding of the genetic factors that influence the feed efficiency of dairy cows is a prerequisite for planning and implementing selective breeding programs. Therefore, a systematic review of reported heritability, genetic markers, and biological pathways affecting FE-related traits in Holstein dairy cows was conducted and followed by a meta-analysis. A total of 47 articles were refined after literature screening and were presented in this review. A meta-analysis based on a random-effects model was then performed to combine the heritability estimates from studies. The meta-analysis showed heritability estimates of residual feed intake, dry matter intake, and energy balance were 0.22, 0.34, and 0.24, respectively. The systematic review demonstrated that 169 significant candidate genes, 13 genetic markers, and 29 biological mechanisms were previously reported on FE in Holstein dairy cows. Involved candidate genes and biological mechanisms are presented mainly in four biological mechanisms (insulin-like growth factors axis, lipid metabolism, oxidative phosphorylation pathways, tryptophan metabolism). The meta-analysis of the reported candidate genes showed three statistically significant KEGG terms and four GO:BP terms, which mainly focused on ATP synthesis, electron transport chain, and OXPHOS pathway.


Assuntos
Genoma , Lactação , Feminino , Bovinos/genética , Animais , Lactação/genética , Marcadores Genéticos , Fenótipo , Ingestão de Alimentos/genética , Ração Animal , Leite/metabolismo
8.
Front Microbiol ; 15: 1307610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348192

RESUMO

Introduction: This study aimed to determine the prevalence and virulome of Listeria in fresh produce distributed in urban communities. Methods: A total of 432 fresh produce samples were collected from farmer's markets in Michigan and West Virginia, USA, resulting in 109 pooled samples. Listeria spp. were isolated and L. monocytogenes was subjected to genoserogrouping by PCR and genotyping by pulsed-field gel electrophoresis (PFGE). Multi-locus sequence typing (MLST) and core-genome multi-locus sequence typing (cgMLST) were conducted for clonal identification. Results: Forty-eight of 109 samples (44.0%) were contaminated with Listeria spp. L. monocytogenes serotype 1/2a and 4b were recovered from radishes, potatoes, and romaine lettuce. Four clonal complexes (CC) were identified and included hypervirulent CC1 (ST1) and CC4 (ST219) of lineage I as well as CC7 (ST7) and CC11 (ST451) of lineage II. Clones CC4 and CC7 were present in the same romaine lettuce sample. CC1 carried Listeria pathogenicity island LIPI-1 and LIPI-3 whereas CC4 contained LIPI-1, LIPI-3, and LIPI-4. CC7 and CC11 had LIPI-1 only. Discussion: Due to previous implication in outbreaks, L. monocytogenes hypervirulent clones in fresh produce pose a public health concern in urban communities.

9.
Proc Natl Acad Sci U S A ; 121(5): e2320237121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252821

RESUMO

Dynamic 3D covalent organic frameworks (COFs) have shown concerted structural transformation and adaptive gas adsorption due to the conformational diversity of organic linkers. However, the isolation and observation of COF rotamers constitute undergoing challenges due to their comparable free energy and subtle rotational energy barrier. Here, we report the atomic-level observation and structural evolution of COF rotamers by cryo-3D electron diffraction and synchrotron powder X-ray diffraction. Specifically, we optimize the crystallinity and morphology of COF-320 to manifest its coherent dynamic responses upon adaptive inclusion of guest molecules. We observe a significant crystal expansion of 29 vol% upon hydration and a giant swelling with volume change up to 78 vol% upon solvation. We record the structural evolution from a non-porous contracted phase to two narrow-pore intermediate phases and the fully opened expanded phase using n-butane as a stabilizing probe at ambient conditions. We uncover the rotational freedom of biphenylene giving rise to significant conformational changes on the diimine motifs from synclinal to syn-periplanar and anticlinal rotamers. We illustrate the 10-fold increment of pore volumes and 100% enhancement of methane uptake capacity of COF-320 at 100 bar and 298 K. The present findings shed light on the design of smarter organic porous materials to maximize host-guest interaction and boost gas uptake capacity through progressive structural transformation.

10.
Aging (Albany NY) ; 16(1): 267-284, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38180745

RESUMO

The accumulation of intracellular disulfides induces a novel and unique form of metabolic-related cell death known as disulfidptosis. A previous study revealed the prognostic value of a risk model of disulfidptosis-related genes in hepatocellular carcinoma (HCC). However, to date, no studies have investigated the relationship between disulfidptosis-related long non-coding RNAs (DRLs) and HCC. In this study, we collected and analyzed RNA sequencing data from 370 HCC samples to explore the DRLs in the tumorigenesis and development of HCC. By employing Lasso Cox regression and multivariate Cox regression analyses, we identified five prognostic DRLs, which were used to construct a prognostic signature. The signature was subsequently validated using receiver operating characteristic (ROC) curves, Kaplan-Meier analysis, Cox regression analyses, nomograms, and calibration curves. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were performed, revealing that the DRLs signature was associated with HCC and several cancer-related pathways. Furthermore, the DRLs signature showed correlations with the infiltration of M0 and M1 macrophages, immune-related functions, and multiple immune checkpoints, including PDCD1, LAG3, CTLA4, TIGIT, CD47, and others. Analysis using the tumor immune dysfunction and exclusion (TIDE) approach demonstrated that the DRLs signature could predict the response to immunotherapy. Finally, we screened potential chemotherapy drugs that could sensitize HCC. In conclusion, our novel DRLs signature provides valuable insights into predicting patient survival and immunotherapy responses.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , RNA Longo não Codificante/genética , Neoplasias Hepáticas/genética , Calibragem , Imunidade , Prognóstico
11.
Int J Biol Macromol ; 261(Pt 1): 129670, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280697

RESUMO

The oxidative microenvironment in fibrotic livers often diminishes the effectiveness of mesenchymal stem cells (MSCs)-based therapy. Recent research suggests that pharmacological pre-treatment could enhance the therapeutic performance of MSCs. In this study, we assessed the impact of Arctium lappa L. polysaccharides (ALP) on the biological properties of nasal ectomesenchymal stem cells (EMSCs) and investigated the augmenting effect of ALP pretreatment on EMSCs (ALP-EMSCs) for the treatment of liver fibrosis. ALP treatment demonstrated multiple biological impacts on EMSC functions regarding liver fibrosis: firstly, it maintained the stemness of the cells while boosting the EMSCs' paracrine effects; secondly, it increased the expression of anti-inflammatory and antioxidant factors; thirdly, it inhibited the activation of hepatic stellate cells (HSCs) and liver collagen build-up by modulating the Wnt/ß-catenin signaling pathways. Collectively, these effects helped to halt the progression of liver fibrosis. Therefore, the use of ALP-EMSCs presents an innovative and promising approach for treating hepatic fibrosis in clinical scenarios.


Assuntos
Arctium , Células-Tronco Mesenquimais , Humanos , beta Catenina/metabolismo , Via de Sinalização Wnt , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-38082798

RESUMO

Multi-tile image stitching aims to merge multiple natural or biomedical images into a single mosaic. This is an essential step in whole-slide imaging and large-scale pathological imaging systems. To tackle this task, a multi-step framework is usually used by first estimating the optimal transformation for each image and then fusing them into a whole image. However, the traditional approaches are usually time-consuming and require manual adjustments. Advances in deep learning techniques provide an end-to-end solution to register and fuse information of multiple tile images. In this paper, we present a deep learning model for multi-tile biomedical image stitching, namely MosaicNet, consisting of an aligning network and a fusion network. We trained the MosaicNet network on a large simulation dataset based on the VOC2012 dataset and evaluated the model on multiple types of datasets, including simulated natural images, mouse brain T2-weighted Magnetic Resonance Imaging (T2w-MRI) data, and mouse brain polarization sensitive-optical coherence tomography (PS-OCT) data. Our method outperformed traditional approaches on both natural images and brain imaging data. The proposed method is robust to different settings of hyper-parameters and shows high computational efficiency, up to approximately 32 times faster than the conventional methods.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Animais , Camundongos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Encéfalo/diagnóstico por imagem
14.
Mol Ther Methods Clin Dev ; 31: 101152, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38027061

RESUMO

Recent studies have shown that mitochondrial transplantation can repair lower limb IRI, but the underlying mechanism of the repair effect remains unclear. In this study, we found that in addition to being taken up by skeletal muscle cells, human umbilical cord mesenchymal stem cells (hMSCs)-derived mitochondria were also taken up by adipocytes, which was accompanied by an increase in optic atrophy 1 (OPA1) and uncoupling protein 1. Transplantation of hMSCs-derived mitochondria could not only supplement the original damaged mitochondrial function of skeletal muscle, but also promote adipocyte browning by increasing the expression of OPA1. In this process, mitochondrial transplantation can reduce cell apoptosis and repair muscle tissue, which promotes the recovery of motor function in vivo. To the best of our knowledge, there is no study on the therapeutic mechanism of mitochondrial transplantation from this perspective, which could provide a theoretical basis.

15.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 150-154, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37953571

RESUMO

To provide clinical evidence for the management of hypoxic-ischemic encephalopathy (HIE) by analyzing the role of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) and colony-stimulating factor-1 (CSF1) in the disease. We purchased 15 Sprague-Dawley (SD) rat pups and randomized them into five groups (n=3), of which one group was untreated as the control group and the other four were modeled by HIE. After modeling, a group was treated as a model group without any treatment, another group was injected with sLOX-1-silencing lentiviral vector (sLOX-1-si group), and the third and fourth were injected with CSF1-silencing lentiviral vector (CSF1-si group) and an equal amount of normal saline (blank group), respectively. After the corresponding intervention, the rat tissue in each group was obtained to observe the pathological injury by HE and TUNEL staining. In addition, sLOX-1, CSF1, 5-hydroxytryptamine (5-HT), dopamine (DA), and norepinephrine (NE) levels in brain tissue of each group were determined. The model group showed more severe pathological damage of the hippocampus and higher neuronal apoptosis than the control group. Besides, higher sLOX-1 and CSF1 levels and lower 5-HT, DA and NE contents were identified in the model group versus the control group (P<0.05). Compared with the blank group, sLOX-1-si and CSF1-si groups showed significantly alleviated hippocampal damage, inhibited neuronal apoptosis, reduced 5-HT, DA, NE, Bax, and cl-caspase-3, and increased Bcl-2 (P<0.05). Silencing sLOX-1 and CSF1 expression ameliorated the pathological injury of HIE and inhibited neuronal apoptosis.


Assuntos
Hipóxia-Isquemia Encefálica , Ratos , Animais , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Animais Recém-Nascidos , Ratos Sprague-Dawley , Serotonina , Apoptose , Receptores Depuradores Classe E
16.
Brain Behav ; 13(12): e3315, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37932960

RESUMO

BACKGROUND: Gaming behavior can induce cerebral changes that may be related to the neurobiological features of gaming disorder (GD). Additionally, individuals with higher levels of depression or impulsivity are more likely to experience GD. Therefore, the present pilot study explored potential neurobiological correlates of GD in the context of depression and impulsivity, after accounting for video gaming behavior. METHODS: Using resting-state functional magnetic resonance imaging (fMRI), a cross-sectional study was conducted with 35 highly involved male adult gamers to examine potential associations between GD severity and regional homogeneity (ReHo) in the entire brain. A mediation model was used to test the role of ReHo in the possible links between depression/impulsivity and GD severity. RESULTS: Individuals with greater GD severity showed increased ReHo in the right Heschl's gyrus and decreased ReHo in the right hippocampus (rHip). Furthermore, depression and impulsivity were negatively correlated with ReHo in the rHip, respectively. More importantly, ReHo in the rHip was found to mediate the associations between depression/impulsivity and GD. CONCLUSIONS: These preliminary findings suggest that GD severity is related to ReHo in brain regions associated with learning/memory/mood and auditory function. Higher levels of depression or impulsivity may potentiate GD through the functional activity of the hippocampus. Our findings advance our understanding of the neurobiological differences behind GD symptoms in highly involved gamers.


Assuntos
Comportamento Aditivo , Imageamento por Ressonância Magnética , Adulto , Humanos , Masculino , Projetos Piloto , Imageamento por Ressonância Magnética/métodos , Estudos Transversais , Encéfalo
17.
Cancers (Basel) ; 15(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894387

RESUMO

Upper tract urothelial carcinoma (UTUC) poses unique challenges in diagnosis and treatment. This comprehensive review focuses on prophylactic intravesical therapy for UTUC, summarizing key aspects of intravesical therapy in various clinical scenarios, including concurrent with or following radical nephroureterectomy, kidney-sparing surgery, ureteroscopy-guided biopsy. The incidence of intravesical recurrence in UTUC after surgical treatment is significant, necessitating effective preventive measures. Intravesical therapy plays a vital role in reducing the risk of bladder recurrence following UTUC surgery. Tailoring timing, drug selection, dosage, and frequency is vital in optimizing treatment outcomes and reducing intravesical recurrence risk in UTUC. This review provides a comprehensive summary of the history, clinical trials, guideline recommendations, and clinical applications of intravesical therapy for UTUC. It also discusses the future directions based on current clinical needs and ongoing trials. Future directions entail optimizing dosage, treatment duration, and drug selection, as well as exploring novel agents and combination therapies. Intravesical therapy holds tremendous potential in improving outcomes for UTUC patients and reducing the risk of bladder recurrence. Although advancements have been made in UTUC treatment research, further refinements are necessary to enhance efficacy and safety.

18.
Nat Prod Res ; : 1-6, 2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37867310

RESUMO

In this study, water-soluble polysaccharides purified from burdock root were used to intervene in carbon tetrachloride (CCl4)-induced acute liver injury (ALI) of BRL3A hepatocytes and rats. Our results indicated that CCl4 significantly inhibited hepatocyte viability and upregulated the expression of reactive oxygen species (ROS), malondialdehyde (MDA), pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6), and the pro-apoptotic protein Bax. However, Arctium lappa L. root polysaccharides (ALP) could effectively ameliorate liver function and histopathology, oxidative stress, and inflammatory markers. In addition, ALP reduced the expression of apoptotic markers and promoted the proliferation of damaged hepatocytes. In conclusion, ALP possesses a hepatoprotective effect mediated by attenuating oxidative damage, inflammation and apoptosis in ALI.

19.
Int J Gen Med ; 16: 2149-2156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284037

RESUMO

Purpose: To study and compare the clinical outcomes of endovascular therapy with those of hybrid surgery in the treatment of Trans-Atlantic Inter-Society Consensus II (TASC II) D aortoiliac occlusive disease (AIOD). Patients and Methods: Patients with TASC II D-type AIOD who underwent their first surgical treatment at our hospital between March 2018 and March 2021 were enrolled and followed up to evaluate the improvement in symptoms, complications, and primary patency. The Kaplan-Meier method was used to compare the differences in primary patency between the treatment groups. Results: In total, 132 of 139 enrolled patients (94.96%) achieved technical success following treatment. The perioperative mortality rate was 1.44% (2/139), and postoperative complications occurred in two patients. Among the patients who successfully underwent surgery, 120 underwent endovascular treatment (110 patients with stenting and 10 patients with thrombolysis before stenting), 10 underwent hybrid surgery, and 2 underwent open surgery. The follow-up data were compared between the endovascular and hybrid groups. At the end of the follow-up period, the patency rates in the hybrid and endovascular groups were 100% and 89.17% (107/120), respectively. The endovascular group achieved primary patency rates of 94.12%, 92.44%, and 89.08% at 6, 12, and 24 months postoperatively, respectively, whereas the primary patency rate remained at 100% in the hybrid group, with no significant variation between the endovascular and hybrid groups (P = 0.289). The endovascular group was further divided into a stent subgroup (110 patients) and a thrombolysis/stent subgroup (10 patients), and no prominent variation was noted in the primary patency between the two subgroups (P = 0.276). Conclusion: Although open surgery is the gold standard treatment for TASC II D-type AIOD, endovascular and hybrid treatments are feasible and effective. Both methods showed good technical success and early to midterm primary patency rates.

20.
Comput Methods Programs Biomed ; 238: 107626, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37263116

RESUMO

BACKGROUND: Lower limb heat exposure (LLHE) is a promising strategy for the daily management of cardiovascular health because of its non-pharmaceutical advantages. To support the application of this strategy in cardiovascular protection, we examined its impact on the global hemodynamic environment. METHODS: Skin blood flow (SBF) of eight locations on the lower limbs was measured before and after LLHE (40 °C and 44 °C) in ten healthy subjects by using a laser Doppler flowmeter. A closed-loop model of circulation uses changes in SBF to quantify the influence of LLHE on the blood flow of the arterial trunk (from ascending aorta to the femoral artery) and visceral branches (coronary, celiac, renal, and mesenteric arteries). RESULTS: The SBF in all locations tested on the lower limbs increased significantly (p<0.001) with LLHE and a 3.39-fold and 7.40-fold increase in mean SBF were observed under 40 °C and 44 °C conditions, respectively. In the model, the peak (3.9-25.1%), end-diastolic (13.7-107.3%), and mean blood flow (8.5-86.5%) in the arterial trunk increased with the increase in temperature, but the retrograde flow in the thoracic aorta and abdominal aorta Ⅰ increased at least twice in the diastolic period. Furthermore, LLHE also increased the blood flow of the visceral branches (2.5-20.7%). CONCLUSION: These findings suggest that LLHE is expected to be a daily strategy for enhancing the functions of both the arterial trunk and visceral arteries, but the increased blood flow reversal in the thoracic and abdominal aortas warrants further investigation.


Assuntos
Temperatura Alta , Hidrodinâmica , Humanos , Aorta Abdominal/fisiologia , Artérias/fisiologia , Hemodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...