Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Synth Syst Biotechnol ; 9(3): 586-593, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38720820

RESUMO

Halomonas bluephagenesis TD serves as an exceptional chassis for next generation industrial biotechnology to produce various products. However, the simultaneous editing of multiple loci in H. bluephagenesis TD remains a significant challenge. Herein, we report the development of a multiple loci genome editing system, named CRISPR-deaminase-assisted base editor (CRISPR-BE) in H. bluephagenesis TD. This system comprises two components: a cytidine (CRISPR-cBE) and an adenosine (CRISPR-aBE) deaminase-based base editor. CRISPR-cBE can introduce a cytidine to thymidine mutation with an efficiency of up to 100 % within a 7-nt editing window in H. bluephagenesis TD. Similarly, CRISPR-aBE demonstrates an efficiency of up to 100 % in converting adenosine to guanosine mutation within a 7-nt editing window. CRISPR-cBE has been further validated and successfully employed for simultaneous multiplexed editing in H. bluephagenesis TD. Our findings reveal that CRISPR-cBE efficiently inactivated all six copies of the IS1086 gene simultaneously by introducing stop codon. This system achieved an editing efficiency of 100 % and 41.67 % in inactivating two genes and three genes, respectively. By substituting the Pcas promoter with the inducible promoter PMmp1, we optimized CRISPR-cBE system and ultimately achieved 100 % editing efficiency in inactivating three genes. In conclusion, our research offers a robust and efficient method for concurrently modifying multiple loci in H. bluephagenesis TD, opening up vast possibilities for industrial applications in the future.

2.
Front Immunol ; 14: 1238647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654493

RESUMO

Psoriasis is a chronic inflammatory skin disease with a prevalence of 0.14% to 1.99%. The underlying pathology is mainly driven by the abnormal immune responses including activation of Th1, Th17, Th22 cells and secretion of cytokines. Patients with psoriasis are more likely to develop cardiovascular disease (CVD) which has been well recognized as a comorbidity of psoriasis. As mediators of hemostasis and thromboinflammation, platelets play an important part in CVD. However, less is known about their pathophysiological contribution to psoriasis and psoriasis-associated CVD. A comprehensive understanding of the role of platelet activation in psoriasis might pave the path for more accurate prediction of cardiovascular (CV) risk and provide new strategies for psoriasis management, which alleviates the increased CV burden associated with psoriasis. Here we review the available evidence about the biomarkers and mechanisms of platelet activation in psoriasis and the role of platelet activation in intriguing the common comorbidity, CVD. We further discussed the implications and efficacy of antiplatelet therapies in the treatment of psoriasis and prevention of psoriasis-associated CVD.


Assuntos
Doenças Cardiovasculares , Psoríase , Trombose , Humanos , Doenças Cardiovasculares/epidemiologia , Inflamação , Psoríase/epidemiologia , Comorbidade , Ativação Plaquetária
3.
Complement Ther Clin Pract ; 51: 101720, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36812734

RESUMO

BACKGROUND: Subjective wellbeing is an important indicator of health outcomes in children. 24-hour movement behaviours (i.e., physical activity, sedentary behaviour, sleep and their combination), a set of modifiable lifestyle behaviours, have been demonstrated to be associated with subjective wellbeing. Thus, the aim of this study was to investigate the relationship between the compliance of the 24-h movement guidelines and subjective wellbeing in a sample of Chinese children. METHODS: Cross-sectional data from primary and secondary school students in Anhui Province, China were used for the analysis. A total of 1098 study participants (mean age: 11.6 years, body mass index: 19.7 ± 2.9) were included, of which 51.5% were boys. Physical activity, screen time, sleep, and subjective wellbeing were measured using validated self-reported questionnaires. Multivariable logistic regression analysis was used to assess the relationships between the compliance of different combinations of 24-h movement guidelines and subjective wellbeing in participants. RESULTS: The compliance of (i.e., physical activity recommendations, screen time recommendations and sleep recommendations) 24-h movement guidelines was associated with better subjective wellbeing (OR: 2.09; 95CI%: 1.01-5.90) compared to the compliance of none of the guidelines. Furthermore, there was a dose-response relationship between the number of guidelines met (3 > 2 > 1 > 0) and improved subjective wellbeing (p < 0.05). Despite some exceptions, there was a significant relationship between the compliance of different combinations of the guidelines and better subjective wellbeing. CONCLUSION: This study found that the compliance of 24-h movement guidelines was associated with greater subjective wellbeing in Chinese children.


Assuntos
Exercício Físico , Tempo de Tela , Masculino , Humanos , Criança , Feminino , Estudos Transversais , Índice de Massa Corporal , Exercício Físico/fisiologia , Sono
4.
IEEE Trans Image Process ; 31: 6922-6936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36318548

RESUMO

Deep generative models have proven to be effective priors for solving a variety of image processing problems. However, the learning of realistic image priors, based on a large number of parameters, requires a large amount of training data. It has been shown recently, with the so-called deep image prior (DIP), that randomly initialized neural networks can act as good image priors without learning. In this paper, we propose a deep generative model for light fields, which is compact and which does not require any training data other than the light field itself. To show the potential of the proposed generative model, we develop a complete light field compression scheme with quantization-aware learning and entropy coding of the quantized weights. Experimental results show that the proposed method yields very competitive results compared with state-of-the-art light field compression methods, both in terms of PSNR and MS-SSIM metrics.

5.
Metab Eng ; 73: 58-69, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35738548

RESUMO

Halomonas bluephagenesis, a robust and contamination-resistant microorganism has been developed as a chassis for "Next Generation Industrial Biotechnology". The non-model H. bluephagenesis requires efficient tools to fine-tune its metabolic fluxes for enhanced production phenotypes. Here we report a highly efficient gene expression regulation system (PrrF1-2-HfqPa) in H. bluephagenesis, small regulatory RNA (sRNA) PrrF1 scaffold from Pseudomonas aeruginosa and a target-binding sequence that downregulate gene expression, and its cognate P. aeruginosa Hfq (HfqPa), recruited by the scaffold to facilitate the hybridization of sRNA and the target mRNA. The PrrF1-2-HfqPa system targeting prpC in H. bluephagenesis helps increase 3-hydroxyvalerate fraction in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) to 21 mol% compared to 3.1 mol% of the control. This sRNA system repressed phaP1 and minD simultaneously, resulting in large polyhydroxybutyrate granules. Further, an sRNA library targeting 30 genes was employed for large-scale target identification to increase mevalonate production. This work expands the study on using an sRNA system not based on Escherichia coli MicC/SgrS-Hfq to repress gene expression, providing a framework to exploit new powerful genome engineering tools based on other sRNAs.


Assuntos
Halomonas , Pequeno RNA não Traduzido , Biotecnologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Halomonas/genética , Halomonas/metabolismo , Hidroxibutiratos/metabolismo , Engenharia Metabólica/métodos , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
6.
Metab Eng ; 72: 275-288, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35429676

RESUMO

Polyhydroxyalkanoates (PHA) are a family of biodegradable and biocompatible plastics with potential to replace petroleum based plastics. Diversity of PHA monomer structures provides flexibility in material properties to suit more applications. In this study, 5-hydroxyvalerate (5HV) synthesis pathway was established based on intrinsic alcohol/aldehyde dehydrogenases. The PHA polymerase cloned from Cupriavidus necator functions to polymerize 5HV into its copolymers in ratios ranging from 8% to 32%. Elastic copolymer P(85% 3HB-co-15% 5HV) was generated with an elongation at break and a Young's modulus of 1283% and 73.1 MPa, respectively. The recombinant H. bluephagenesis was able to convert various diols including 1, 3-propanediol, 1, 4-butanediol and 1, 5-pentanediol into PHA, leading to 13 PHA polymers including transparent P(53% 3HB-co-20% 4HB-co-27% 5HV) and sticky P(3HB-co-3HP-co-4HB-co-5HV). The engineered H. bluephagenesis was successfully grown in a 7-L bioreactor to produce the highly elastic P(85% 3HB-co-15% 5HV) and the sticky P(3HB-co-3HP-co-4HB-co-5HV), demonstrating their potential for industrial scale-up.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Halomonas/genética , Halomonas/metabolismo , Hidroxibutiratos/metabolismo , Plásticos/metabolismo , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/genética , Poli-Hidroxialcanoatos/metabolismo
7.
Front Microbiol ; 13: 1100745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726563

RESUMO

Introduction: Red-colored lycopene has received remarkable attention in medicine because of its antioxidant properties for reducing the risks of many human cancers. However, the extraction of lycopene from natural hosts is limited. Moreover, the chemically synthesized lycopene raises safety concerns due to residual chemical reagents. Halomonas bluephagenesis is a versatile chassis for the production of fine chemicals because of its open growth property without sterilization. Methods: A heterologous mevalonate (MVA) pathway was introduced into H. bluephagenesis strain TD1.0 to engineer a bacterial host for lycopene production. A pTer7 plasmid mediating the expression of six MVA pathway genes under the control of a phage PMmp1 and an Escherichia coli Ptrc promoters and a pTer3 plasmid providing lycopene biosynthesis downstream genes derived from Streptomyces avermitilis were constructed and transformed into TD1.0. The production of lycopene in the engineered H. bluephagenesis was evaluated. Optimization of engineered bacteria was performed to increase lycopene yield. Results: The engineered TD1.0/pTer7-pTer3 produced lycopene at a maximum yield of 0.20 mg/g dried cell weight (DCW). Replacing downstream genes with those from S. lividans elevated the lycopene production to 0.70 mg/g DCW in the TD1.0/pTer7-pTer5 strain. Optimizing the PMmp1 promoter in plasmid pTer7 with a relatively weak Ptrc even increased the lycopene production to 1.22 mg/g DCW. However, the change in the Ptrc promoter in pTer7 with PMmp1 did not improve the yield of lycopene. Conclusion: We first engineered an H. bluephagenesis for the lycopene production. The co-optimization of downstream genes and promoters governing MVA pathway gene expressions can synergistically enhance the microbial overproduction of lycopene.

8.
J Healthc Eng ; 2021: 9962906, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055278

RESUMO

With the continuous improvement of living standards, the level of physical development of adolescents has improved significantly. The physical functions and healthy development of adolescents are relatively slow and even appear to decline. This paper proposes a novel data mining algorithm based on big data for monitoring of adolescent student's physical health to overcome this problem and enhance young people's physical fitness and mental health. Since big data technology has positive practical significance in promoting young people's healthy development and promoting individual health rights, this article will implement commonly used data mining algorithms and Hadoop/Spark big data processing. The algorithm on different platforms verified that the big data platform has good computing performance for the data mining algorithm by comparing the running time. The current work will prove to be a complete physical health data management system and effectively save, process, and analyze adolescents' physical test data.


Assuntos
Big Data , Acessibilidade aos Serviços de Saúde , Adolescente , Algoritmos , Mineração de Dados , Direitos Humanos , Humanos , Estudantes
9.
Nat Commun ; 12(1): 1513, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686068

RESUMO

3-Hydroxypropionic acid (3HP), an important three carbon (C3) chemical, is designated as one of the top platform chemicals with an urgent need for improved industrial production. Halomonas bluephagenesis shows the potential as a chassis for competitive bioproduction of various chemicals due to its ability to grow under an open, unsterile and continuous process. Here, we report the strategy for producing 3HP and its copolymer poly(3-hydroxybutyrate-co-3-hydroxypropionate) (P3HB3HP) by the development of H. bluephagenesis. The transcriptome analysis reveals its 3HP degradation and synthesis pathways involving endogenous synthetic enzymes from 1,3-propanediol. Combing the optimized expression of aldehyde dehydrogenase (AldDHb), an engineered H. bluephagenesis strain of whose 3HP degradation pathway is deleted and that overexpresses alcohol dehydrogenases (AdhP) on its genome under a balanced redox state, is constructed with an enhanced 1.3-propanediol-dependent 3HP biosynthetic pathway to produce 154 g L-1 of 3HP with a yield and productivity of 0.93 g g-1 1,3-propanediol and 2.4 g L-1 h-1, respectively. Moreover, the strain could also accumulate 60% poly(3-hydroxybutyrate-co-32-45% 3-hydroxypropionate) in the dry cell mass, demonstrating to be a suitable chassis for hyperproduction of 3HP and P3HB3HP.


Assuntos
Vias Biossintéticas , Halomonas/genética , Halomonas/metabolismo , Ácido Láctico/análogos & derivados , Ácido Láctico/biossíntese , Engenharia Metabólica , Proteínas de Bactérias/metabolismo , Biopolímeros/metabolismo , Vias Biossintéticas/genética , Edição de Genes , Regulação Bacteriana da Expressão Gênica , Halomonas/enzimologia , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Propilenoglicóis/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-33052854

RESUMO

We address the problem of light field dimensionality reduction for compression. We describe a local low rank approximation method using a parametric disparity model. The local support of the approximation is defined by super-rays. A super-ray can be seen as a set of super-pixels that are coherent across all light field views. A dedicated super-ray construction method is first described that constrains the super-pixels forming a given super-ray to be all of the same shape and size, dealing with occlusions. This constraint is needed so that the super-rays can be used as supports of angular dimensionality reduction based on low rank matrix approximation. The light field low rank assumption depends on how much the views are correlated, i.e. on how well they can be aligned by disparity compensation. We first introduce a parametric model describing the local variations of disparity within each super-ray. We then consider two methods for estimating the model parameters. The first method simply fits the model on an input disparity map. We then introduce a disparity estimation method using a low rank prior. This method alternatively searches for the best parameters of the disparity model and of the low rank approximation. We assess the proposed disparity parametric model, first assuming that the disparity is constant within a super-ray, and second by considering an affine disparity model. We show that using the proposed disparity parametric model and estimation algorithm gives an alignment of super-pixels across views that favours the low rank approximation compared with using disparity estimated with classical computer vision methods. The low rank matrix approximation is computed on the disparity compensated super-rays using a singular value decomposition (SVD). A coding algorithm is then described for the different components of the proposed disparity-compensated low rank approximation. Experimental results show performance gains, with a rate saving going up to 92.61%, compared with the JPEG Pleno anchor, for real light fields captured by a Lytro Illum camera. The rate saving goes up to 37.72% with synthetic light fields. The approach is also shown to outperform an HEVC-based light field compression scheme.

11.
Metab Eng ; 60: 119-127, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32315761

RESUMO

Halophilic Halomonas bluephagenesis (H. bluephagenesis), a chassis for cost-effective Next Generation Industrial Biotechnology (NGIB), was for the first time engineered to successfully produce L-threonine, one of the aspartic family amino acids (AFAAs). Five exogenous genes including thrA*BC, lysC* and rhtC encoding homoserine dehydrogenase mutant at G433R, homoserine kinase, L-threonine synthase, aspartokinase mutant at T344M, S345L and T352I, and export transporter of threonine, respectively, were grouped into two expression modules for transcriptional tuning on plasmid- and chromosome-based systems in H. bluephagenesis, respectively, after pathway tuning debugging. Combined with deletion of import transporter or/and L-threonine dehydrogenase encoded by sstT or/and thd, respectively, the resulting recombinant H. bluephagenesis TDHR3-42-p226 produced 7.5 g/L and 33 g/L L-threonine when grown under open unsterile conditions in shake flasks and in a 7 L bioreactor, respectively. Engineering H. bluephagenesis demonstrates strong potential for production of diverse metabolic chemicals.


Assuntos
Halomonas/genética , Halomonas/metabolismo , Engenharia Metabólica/métodos , Treonina/biossíntese , Reatores Biológicos , Cromossomos Artificiais Bacterianos , Fermentação , Halomonas/enzimologia , Isomerismo , Plasmídeos/genética
12.
Metab Eng ; 59: 119-130, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32119929

RESUMO

Polyhydroxyalkanoates (PHA) have found widespread medical applications due to their biocompatibility and biodegradability, while further chemical modification requires functional groups on PHA. Halomonas bluephagenesis, a non-model halophilic bacterium serving as a chassis for the Next Generation Industrial Biotechnology (NGIB), was successfully engineered to express heterologous PHA synthase (PhaC) and enoyl coenzyme-A hydratase (PhaJ) from Aeromonas hydrophila 4AK4, along with a deletion of its native phaC gene to synthesize the short chain-co-medium chain-length PHA copolymers, namely poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-3-hydroxyhex-5-enoate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyhex-5-enoate). After optimizations of the expression cassette and ribosomal binding site combined with introduction of endogenous acyl-CoA synthetase (fadD), the resulting recombinant strain H. bluephagenesis TDR4 achieved a remarkably high 3-hydroxyhexenoate (3HHxE) molar ratio of 35% when grown on glucose and 5-hexenoic acid as co-substrates. The total ratio of side chain consisting of 3HHx and 3HHxE monomers in the terpolymer can approach 44 mol%. H. bluephagenesis TDR4 was grown to a cell dry mass (CDM) of 30 g/L containing approximately 20% poly(3-hydroxybutyrate-co-22.75 mol% 3-hydroxy-5-hexenoate) in a 48-h of open and unsterile fermentation with a 5-hexenoic acid conversion efficiency of 91%. The resulted functional PHA containing 12.5 mol% 3-hydroxy-5-hexenoate exhibits more than 1000% elongation at break. The engineered H. bluephagenesis TDR4 can be used as an experimental platform to produce functional PHA.


Assuntos
Proteínas de Bactérias , Halomonas , Engenharia Metabólica , Poli-Hidroxialcanoatos , Aeromonas hydrophila/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Halomonas/genética , Halomonas/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/genética
13.
IEEE Trans Image Process ; 28(12): 5867-5880, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31247553

RESUMO

In this paper, we propose a learning-based depth estimation framework suitable for both densely and sparsely sampled light fields. The proposed framework consists of three processing steps: initial depth estimation, fusion with occlusion handling, and refinement. The estimation can be performed from a flexible subset of input views. The fusion of initial disparity estimates, relying on two warping error measures, allows us to have an accurate estimation in occluded regions and along the contours. In contrast with methods relying on the computation of cost volumes, the proposed approach does not need any prior information on the disparity range. Experimental results show that the proposed method outperforms state-of-the-art light fields depth estimation methods, including prior methods based on deep neural architectures.

14.
Biotechnol J ; 14(12): e1900132, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31119892

RESUMO

The large-scale use of petrochemical-based plastics is damaging our environment. Discarded plastics are harmful to both marine and land animals, sometimes causing death when ingested. Biodegradable plastics have gained attentions from the public and the academia to reduce environmental burdens. Poly-3-hydroxybutyrate (PHB), the simplest and the best-studied bioplastic member of the polyhydroxyalkanoate (PHA) family synthesized by many bacteria, has been studied as a feed additive for large yellow croaker fish and weaned piglets. The fish grow faster and gain more weight when 1% and 2% PHB is added as a feed additive, accompanied by increased survival rates. Weaned piglets are found to grow normally and showed no significant change in average daily weight gains, average daily feed intakes, feed efficiency, and organ developments when 0.5% PHB is added to the feed. It can therefore be concluded that biodegradable and biocompatible PHB is not harmful as a feed additive for marine large yellow croakers and sensitive weaned piglets. PHB therefore holds great promise as a plastic that combines biodegradability and biocompatibility with good tolerability as a feed supplement for animals.


Assuntos
Ração Animal , Bactérias/metabolismo , Biopolímeros , Hidroxibutiratos , Poliésteres , Animais , Materiais Biocompatíveis , Plásticos Biodegradáveis , Biodegradação Ambiental , Biopolímeros/química , Composição Corporal , Suplementos Nutricionais , Poluição Ambiental , Peixes/crescimento & desenvolvimento , Aditivos Alimentares , Hidroxibutiratos/química , Poliésteres/química , Poli-Hidroxialcanoatos/química , Suínos/crescimento & desenvolvimento
15.
Metab Eng ; 54: 69-82, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30914380

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a promising biopolyester with good mechanical properties and biodegradability. Large-scale production of PHBV is still hindered by the high production cost. CRISPR/Cas9 method was used to engineer the TCA cycle in Halomonas bluephagenesis on its chromosome for production of PHBV from glucose as a sole carbon source. Two TCA cycle related genes sdhE and icl encoding succinate dehydrogenase assembly factor 2 and isocitrate lysase were deleted, respectively, in H. bluephagenesis TD08AB containing PHBV synthesis genes on the chromosome, to channel more flux to increase the 3-hydroxyvalerate (3HV) ratio of PHBV. Due to a poor growth behavior of the mutant strains, H. bluephagenesis TY194 equipped with a medium strength Pporin-194 promoter was selected for further studies. The sdhE and/or icl mutant strains of H. bluephagenesis TY194 were constructed to show enhanced cell growth, PHBV synthesis and 3HV molar ratio. Gluconate was used to activate ED pathway and thus TCA cycle to increase 3HV content. H. bluephagenesis TY194 (ΔsdhEΔicl) was found to synthesize 17mol% 3HV in PHBV. Supported by the synergetic function of phosphoenolpyruvate carboxylase and Vitreoscilla hemoglobin encoded by genes ppc and vgb inserted into the chromosome of H. bluephagenesis TY194 (ΔsdhE) serving to enhance TCA cycle activity, a series of strains were generated that could produce PHBV containing 3-18mol% 3HV using glucose as a sole carbon source. Shake flask studies showed that H. bluephagenesis TY194 (ΔsdhE, G7::Pporin-ppc) produced 6.3 g/L cell dry weight (CDW), 65% PHBV in CDW and 25mol% 3HV in PHBV when grown in glucose and gluconate. 25mol% 3HV was the highest reported via chromosomal expression system. PHBV copolymers with different 3HV molar ratios were extracted and characterized. Next-generation industrial biotechnology (NGIB) based on recombinant H. bluephagenesis grown under unsterile and continuous conditions, allows production of P(3HB-0∼25mol% 3HV) in a convenient way with reduced production complexity and cost.


Assuntos
Cromossomos Bacterianos , Ciclo do Ácido Cítrico/genética , Engenharia Genética , Halomonas , Poliésteres/metabolismo , Ácido 3-Hidroxibutírico/genética , Ácido 3-Hidroxibutírico/metabolismo , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Halomonas/genética , Halomonas/metabolismo , Ácidos Pentanoicos/metabolismo
16.
Biotechnol Adv ; 37(6): 107365, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30851362

RESUMO

Downstream is a very expensive process for microbial fermentation. It usually involves complicated equipment and processes to obtain desired chemicals or materials from intra- or/and extracellular spaces of microorganisms. Recently, it becomes possible to simplify the microbial cell separation processes by morphologically engineering the shapes of small microorganisms. Cells can be induced aggregated, or enlarged into fibers or large spheres, so that gravity sedimentation or press filtration becomes a convenient operation. Various genes related to the microbial morphology have been manipulated to obtain large shapes and multiple fission to form long fibers or large spheres. At the same time, induced lysis of cells can be achieved by introducing lysis gene into the cells. To achieve better economy, it is desirable to receive products both in broths and in cell masses. Co-production of different chemicals produced intracellularly and extracellularly could be an effectively economical way. Based on these novel methods, easy cell separation in the downstream processing is expected to be achieved soon.


Assuntos
Filtração , Engenharia Metabólica , Fermentação
17.
Biomacromolecules ; 20(9): 3233-3241, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-30624051

RESUMO

Fluorescent materials play an important role in biomedical fields. However, the main types of fluorescent materials suffer from several disadvantages especially the biotoxicity, which largely restrict its wider applications in biological fields. In this study, a highly efficient rare-earth-modified fluorescent material was successfully designed and fabricated based on polyhydroxyalkanoates, which are known as biodegradable and biocompatible materials. A new Functional-PHA polymer was microbially synthesized by engineered Halomonas bluephagenesis and was used as a basal matrix to generate the rare-earth-modified PHA. N-Acetyl-l-cysteine-grafted PHA (NAL-grafted-PHA) was first produced via a UV-initiated thiol-ene click reaction and the rare earth metal ions (Eu3+ and Tb3+) were subsequently chelated onto the NAL-grafted-PHA through the coordination effect. The composite material exhibited intense photoluminescence properties under UV laser excitation, indicating the excellent features as fluorescent material. The enhanced hydrophilicity and superior biocompatibility of rare-earth-chelated PHA were confirmed, suggesting its great potential application value in biomedical fields.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Metais Terras Raras/química , Poli-Hidroxialcanoatos/química , Acetilcisteína/síntese química , Acetilcisteína/química , Materiais Biocompatíveis/síntese química , Química Click , Corantes Fluorescentes/síntese química , Halomonas/química , Halomonas/metabolismo , Poli-Hidroxialcanoatos/síntese química , Polímeros/síntese química , Polímeros/química , Compostos de Sulfidrila/química
18.
Biotechnol Bioeng ; 116(4): 805-815, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30537067

RESUMO

Halomonas has been developed as a platform for the next generation industrial biotechnology allowing open and nonsterile growth without microbial contamination under a high-salt concentration and alkali pH. To reduce downstream cost associated with continuous centrifugation and salt containing wastewater treatment, Halomonas campaniensis strain LS21 was engineered to become self-flocculating by knocking out an etf operon encoding two subunits of an electron transferring flavoprotein in the predicted electron transfer chain. Self-flocculation could be attributed to the decrease of the surface charge and increase of the cellular hydrophobicity resulted from deleted etf. A wastewaterless fermentation strategy based on the self-flocculating H. campaniensis was developed for growth and the production of poly-3-hydroxybutyrate (PHB) as an example. Most microbial cells flocculated and precipitated to the bottom of the bioreactor within 1 min after stopping the aeration and agitation. The supernatant can be used again without sterilization or inoculation for the growth of the next batch after collecting the precipitated cell mass. The wastewaterless process was conducted for four runs without generating wastewater. PHB accumulation by the self-flocculent strain was enhanced via promoter and ribosome binding site optimizations, the productivities of cell dry weight and PHB were increased from 0.45 and 0.18 g·L -1 ·hr -1 for the batch process compared to 0.82 and 0.33 g·L -1 ·hr -1 for the wastewaterless continuous process, respectively. This has clearly demonstrated the advantages of the wastewaterless process in that it not only reduces wastewater but also increases cell growth and product formation efficiency in a given period of time.


Assuntos
Fermentação , Halomonas/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Águas Residuárias/microbiologia , Reatores Biológicos/microbiologia , Engenharia Celular/métodos , Floculação , Halomonas/genética , Halomonas/crescimento & desenvolvimento , Microbiologia Industrial/métodos , Águas Residuárias/análise , Purificação da Água/métodos
19.
Artigo em Inglês | MEDLINE | ID: mdl-29994170

RESUMO

Building up on the advances in low rank matrix completion, this article presents a novel method for propagating the inpainting of the central view of a light field to all the other views. After generating a set of warped versions of the inpainted central view with random homographies, both the original light field views and the warped ones are vectorized and concatenated into a matrix. Because of the redundancy between the views, the matrix satisfies a low rank assumption enabling us to fill the region to inpaint with low rank matrix completion. To this end, a new matrix completion algorithm, better suited to the inpainting application than existing methods, is also developed in this paper. In its simple form, our method does not require any depth prior, unlike most existing light field inpainting algorithms. The method has then been extended to better handle the case where the area to inpaint contains depth discontinuities. In this case, a segmentation map of the different depth layers of the inpainted central view is required. This information is used to warp the depth layers with different homographies. Our experiments with natural light fields captured with plenoptic cameras demonstrate the robustness of the low rank approach to noisy data as well as large color and illumination variations between the views of the light field.

20.
Metab Eng ; 47: 143-152, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29551476

RESUMO

Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is one of the most promising biomaterials expected to be used in a wide range of scenarios. However, its large-scale production is still hindered by the high cost. Here we report the engineering of Halomonas bluephagenesis as a low-cost platform for non-sterile and continuous fermentative production of P(3HB-co-4HB) from glucose. Two interrelated 4-hydroxybutyrate (4HB) biosynthesis pathways were constructed to guarantee 4HB monomer supply for P(3HB-co-4HB) synthesis by working in concert with 3-hydroxybutyrate (3HB) pathway. Interestingly, only 0.17 mol% 4HB in the copolymer was obtained during shake flask studies. Pathway debugging using structurally related carbon source located the failure as insufficient 4HB accumulation. Further whole genome sequencing and comparative genomic analysis identified multiple orthologs of succinate semialdehyde dehydrogenase (gabD) that may compete with 4HB synthesis flux in H. bluephagenesis. Accordingly, combinatory gene-knockout strains were constructed and characterized, through which the molar fraction of 4HB was increased by 24-fold in shake flask studies. The best-performing strain was grown on glucose as the single carbon source for 60 h under non-sterile conditions in a 7-L bioreactor, reaching 26.3 g/L of dry cell mass containing 60.5% P(3HB-co-17.04 mol%4HB). Besides, 4HB molar fraction in the copolymer can be tuned from 13 mol% to 25 mol% by controlling the residual glucose concentration in the cultures. This is the first study to achieve the production of P(3HB-co-4HB) from only glucose using Halomonas.


Assuntos
Glucose , Halomonas , Hidroxibutiratos/metabolismo , Engenharia Metabólica , Poliésteres/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glucose/genética , Glucose/metabolismo , Halomonas/genética , Halomonas/metabolismo , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...