Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 11503, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661263

RESUMO

Surface plasmon polaritons (SPPs) are collective excitations of free electrons propagating along a metal-dielectric interface. Although some basic quantum properties of SPPs, such as the preservation of entanglement, the wave-particle duality of a single plasmon, the quantum interference of two plasmons, and the verification of entanglement generation, have been shown, more advanced quantum information protocols have yet to be demonstrated with SPPs. Here, we experimentally realize quantum state teleportation between single photons and SPPs. To achieve this, we use polarization-entangled photon pairs, coherent photon-plasmon-photon conversion on a metallic subwavelength hole array, complete Bell-state measurements and an active feed-forward technique. The results of both quantum state and quantum process tomography confirm the quantum nature of the SPP mediated teleportation. An average state fidelity of [Formula: see text] and a process fidelity of [Formula: see text], which are well above the classical limit, are achieved. Our work shows that SPPs may be useful for realizing complex quantum protocols in a photonic-plasmonic hybrid quantum network.

2.
J Phys Chem Lett ; 7(15): 2888-92, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27409980

RESUMO

The physical origin of the observed anomalous photoluminescence (PL) behavior, that is, the large-size graphene quantum dots (GQDs) exhibiting higher PL energy than the small ones and the broadening PL spectra from deep ultraviolet to near-infrared, has been debated for many years. Obviously, it is in conflict with the well-accepted quantum confinement. Here we shed new light on these two notable debates by state-of-the-art first-principles calculations based on many-body perturbation theory. We find that quantum confinement is significant in GQDs with remarkable size-dependent exciton absorption/emission. The edge environment from alkaline to acidic conditions causes a blue shift of the PL peak. Furthermore, carbon vacancies are inclined to assemble at the GQD edge and form the tiny edge microstructures. The bound excitons, localized inside these edge microstructures, determine the anomalous PL behavior (blue and UV emission) of large-size GQDs. The bound excitons confined in the whole GQD lead to the low-energy transition.

3.
Adv Mater ; 28(36): 7978-7983, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27383739

RESUMO

Quasi-2D GaN layers inserted in an AlGaN matrix are proposed as a novel active region to develop a high-output-power UV light source. Such a structure is successfully achieved by precise control in molecular beam epitaxy and shows an amazing output power of ≈160 mW at 285 nm with a pulsed electron-beam excitation. This device is promising and competitive in non-line-of-sight communications or the sterilization field.

4.
ACS Nano ; 9(9): 9276-83, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26301765

RESUMO

The physical origin of the strong emission line at 3.45 eV and broadening yellow luminescence (YL) band centered at 2.2 eV in GaN nanowire (NW) has been debated for many years. Here, we solve these two notable issues by using state-of-the-art first-principles calculations based on many-body perturbation theory combined with polarization-resolved experiments. We demonstrate that the ubiquitous surface "microwires" with amazing characteristics, i.e., the outgrowth nanocrystal along the NW side wall, are vital and offer a new perspective to provide insight into some puzzles in epitaxy materials. Furthermore, inversion of the top valence bands, in the decreasing order of crystal-field split-off hole (CH) and heavy/light hole, results in the optical transition polarized along the NW axis due to quantum confinement. The optical emission from bound excitons localized around the surface microwire to CH band is responsible for the 3.45 eV line with E∥c polarization. Both gallium vacancy and carbon-related defects tend to assemble at the NW surface layer, determining the broadening YL band.

5.
Sci Rep ; 4: 6710, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25338639

RESUMO

Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al(0.83)Ga(0.17)N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al(0.83)Ga(0.17)N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 10(19) cm(-3) can be obtained in (AlN)5/(GaN)1 SL by Mg(Ga) δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

6.
Nanoscale ; 6(13): 7609-18, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24896227

RESUMO

By using first-principles calculations, we predict that a sizable band gap can be opened at the Dirac point of silicene without degrading silicene's electronic properties with n-type doping by Cu, Ag, and Au adsorption, p-type doping by Ir adsorption, and neutral doping by Pt adsorption. A silicene p-i-n tunneling field effect transistor (TFET) model is designed by the adsorption of different transition metal atoms on different regions of silicene. Quantum transport simulations demonstrate that silicene TFETs have an on-off ratio of 10(3), a small sub-threshold swing of 77 mV dec(-1), and a large on-state current of over 1 mA µm(-1) under a supply voltage of about 1.7 V.

7.
Antimicrob Agents Chemother ; 48(3): 909-17, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14982783

RESUMO

Antibiotic efflux is an important mechanism of resistance in pathogenic bacteria. Here we describe the identification and characterization of a novel chromosomally encoded multidrug resistance efflux protein in Staphylococcus aureus, MdeA (multidrug efflux A). MdeA was identified from screening an S. aureus open reading frame expression library for resistance to antibiotic compounds. When overexpressed, MdeA confers resistance on S. aureus to a range of quaternary ammonium compounds and antibiotics, but not fluoroquinolones. MdeA is a 52-kDa protein with 14 predicted transmembrane segments. It belongs to the major facilitator superfamily and is most closely related, among known efflux proteins, to LmrB of Bacillus subtilis and EmrB of Escherichia coli. Overexpression of mdeA in S. aureus reduced ethidium bromide uptake and enhanced its efflux, which could be inhibited by reserpine and abolished by an uncoupler. The mdeA promoter was identified by primer extension. Spontaneous mutants selected for increased resistance to an MdeA substrate had undergone mutations in the promoter for mdeA, and their mdeA transcription levels were increased by as much as 15-fold. The mdeA gene was present in the genomes of all six strains of S. aureus examined. Uncharacterized homologs of MdeA were present elsewhere in the S. aureus genome, but their overexpression did not mediate resistance to the antibacterials tested. However, MdeA homologs were identified in other bacteria, including Bacillus anthracis, some of which were shown to be functional orthologs of MdeA.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Staphylococcus aureus/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Primers do DNA , Dados de Sequência Molecular , Mutação , Filogenia , Plasmídeos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Biomol Screen ; 8(6): 712-5, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14711397

RESUMO

Undecaprenyl pyrophosphate synthase (UPPS) catalyzes the consecutive condensation of 8 molecules of isopentenyl pyrophosphate with farnesyl pyrophosphate to yield C55-undecaprenyl pyrophosphate, which is required for bacterial cell wall synthesis. UPPS is found in both gram-positive and gram-negative bacteria, and based on the differences between bacterial variants of UPPS and their human counterpart, dolicopyrophosphate synthase, it was identified as an attractive antibacterial target. An assay, which monitors the release of Pi by coupling the UPPS catalyzed reaction with inorganic pyrophosphatase, was employed to conduct an HTS campaign using an inhouse collection of compounds. A direct assay measuring the incorporation of 14C-IPP (isopentenyl pyrophosphate) was used as a secondary assay to evaluate the high-throughput screening (HTS) hits. From the HTS campaign, a few classes of UPPS inhibitors were identified. During the process of hit evaluation by the direct assay, the authors observed that Triton, an essential factor for the enzyme activity and accurate formation of the natural product, dramatically altered the inhibitory activity of a particular class of compounds. Above its critical micellar concentration (CMC), Triton abolished the inhibitory activity of these compounds. Further research will be required to establish the biophysical phenomenon that causes this effect. Meanwhile, it can be speculated that Triton (and other detergents) above CMC may hinder the identification in screening compounds of certain classes of hits.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Octoxinol/farmacologia , Alquil e Aril Transferases/metabolismo , Concentração Inibidora 50 , Octoxinol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...