Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 14(3): 468-491, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189443

RESUMO

Activating innate immunity in cancer cells through cytoplasmic nucleic acid sensing pathways, a phenomenon known as "viral mimicry," has emerged as an effective strategy to convert immunologically "cold" tumors into "hot." Through a curated CRISPR-based screen of RNA helicases, we identified DExD/H-box helicase 9 (DHX9) as a potent repressor of double-stranded RNA (dsRNA) in small cell lung cancers (SCLC). Depletion of DHX9 induced accumulation of cytoplasmic dsRNA and triggered tumor-intrinsic innate immunity. Intriguingly, ablating DHX9 also induced aberrant accumulation of R-loops, which resulted in an increase of DNA damage-derived cytoplasmic DNA and replication stress in SCLCs. In vivo, DHX9 deletion promoted a decrease in tumor growth while inducing a more immunogenic tumor microenvironment, invigorating responsiveness to immune-checkpoint blockade. These findings suggest that DHX9 is a crucial repressor of tumor-intrinsic innate immunity and replication stress, representing a promising target for SCLC and other "cold" tumors in which genomic instability contributes to pathology. SIGNIFICANCE: One promising strategy to trigger an immune response within tumors and enhance immunotherapy efficacy is by inducing endogenous "virus-mimetic" nucleic acid accumulation. Here, we identify DHX9 as a viral-mimicry-inducing factor involved in the suppression of double-stranded RNAs and R-loops and propose DHX9 as a novel target to enhance antitumor immunity. See related commentary by Chiappinelli, p. 389. This article is featured in Selected Articles from This Issue, p. 384.


Assuntos
Neoplasias Pulmonares , Ácidos Nucleicos , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Interferons , Neoplasias Pulmonares/genética , Imunidade Inata , RNA de Cadeia Dupla , Microambiente Tumoral , Proteínas de Neoplasias , RNA Helicases DEAD-box/genética
2.
Biomedicines ; 9(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073513

RESUMO

The let-7 family is among the first microRNAs found. Recent investigations have indicated that it is highly expressed in many systems, including cerebral and cardiovascular systems. Numerous studies have implicated the aberrant expression of let-7 members in cardiovascular diseases, such as stroke, myocardial infarction (MI), cardiac fibrosis, and atherosclerosis as well as in the inflammation related to these diseases. Furthermore, the let-7 microRNAs are involved in development and differentiation of embryonic stem cells in the cardiovascular system. Numerous genes have been identified as target genes of let-7, as well as a number of the let-7' regulators. Further studies are necessary to identify the gene targets and signaling pathways of let-7 in cardiovascular diseases and inflammatory processes. The bulk of the let-7' regulatory proteins are well studied in development, proliferation, differentiation, and cancer, but their roles in inflammation, cardiovascular diseases, and/or stroke are not well understood. Further knowledge on the regulation of let-7 is crucial for therapeutic advances. This review focuses on research progress regarding the roles of let-7 and their regulation in cerebral and cardiovascular diseases and associated inflammation.

3.
Mol Ther ; 28(8): 1902-1917, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32353321

RESUMO

Severed CNS axons fail to regenerate in adult mammals and there are no effective regenerative strategies to treat patients with CNS injuries. Several genes, including phosphatase and tensin homolog (PTEN) and Krüppel-like factors, regulate intrinsic growth capacity of mature neurons. The Lin28 gene is essential for cell development and pluripotency in worms and mammals. In this study, we evaluated the role of Lin28a in regulating regenerative capacity of diverse populations of CNS neurons in adult mammals. Using a neuron-specific Thy1 promoter, we generated transgenic mice that overexpress Lin28a protein in multiple populations of projection neurons, including corticospinal tracts and retinal ganglion cells. We demonstrate that upregulation of Lin28a in transgenic mice induces significant long distance regeneration of both corticospinal axons and the optic nerve in adult mice. Importantly, overexpression of Lin28a by post-injury treatment with adeno-associated virus type 2 (AAV2) vector stimulates dramatic regeneration of descending spinal tracts and optic nerve axons after lesions. Upregulation of Lin28a also enhances activity of the Akt signaling pathway in mature CNS neurons. Therefore, Lin28a is critical for regulating growth capacity of multiple CNS neurons and may become an important molecular target for treating CNS injuries.


Assuntos
Axônios/metabolismo , Regeneração Nervosa/genética , Nervo Óptico/metabolismo , Proteínas de Ligação a RNA/genética , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/metabolismo , Animais , Córtex Cerebral/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Camundongos , Camundongos Transgênicos , Neurogênese , Neurônios/metabolismo , Nervo Óptico/patologia , Regiões Promotoras Genéticas , Células Ganglionares da Retina/metabolismo , Transdução de Sinais , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia
4.
Mol Ther ; 27(1): 102-117, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30509565

RESUMO

Liver kinase B1 (LKB1), a downstream effector of cyclic AMP (cAMP)/PKA and phosphatidylinositol 3-kinase (PI3K) pathways, is a determinant for migration and differentiation of many cells, but its role in CNS axon regeneration is unknown. Therefore, LKB1 was overexpressed in sensorimotor cortex of adult mice five days after mid-thoracic spinal cord injury, using an AAV2 vector. Regeneration of corticospinal axons was dramatically enhanced. Next, systemic injection of a mutant-AAV9 vector was used to upregulate LKB1 specifically in neurons. This promoted long-distance regeneration of injured corticospinal fibers into caudal spinal cord in adult mice and regrowth of descending serotonergic and tyrosine hydroxylase immunoreactive axons. Either intracortical or systemic viral delivery of LKB1 significantly improved recovery of locomotor functions in adult mice with spinal cord injury. Moreover, we demonstrated that LKB1 used AMPKα, NUAK1, and ERK as the downstream effectors in the cortex of adult mice. Thus, LKB1 may be a critical factor for enhancing the growth capacity of mature neurons and may be an important molecular target in the treatment of CNS injuries.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Traumatismos da Medula Espinal/terapia , Proteínas Quinases Ativadas por AMP , Animais , Axônios/metabolismo , Modelos Animais de Doenças , Neurogênese/fisiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/metabolismo
5.
mBio ; 6(2): e02518, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25714714

RESUMO

UNLABELLED: Hepatitis C virus (HCV) infection is characterized by persistent replication of a complex mixture of viruses termed a "quasispecies." Transmission is generally associated with a stringent population bottleneck characterized by infection by limited numbers of "transmitted/founder" (T/F) viruses. Characterization of T/F genomes of human immunodeficiency virus type 1 (HIV-1) has been integral to studies of transmission, immunopathogenesis, and vaccine development. Here, we describe the identification of complete T/F genomes of HCV by single-genome sequencing of plasma viral RNA from acutely infected subjects. A total of 2,739 single-genome-derived amplicons comprising 10,966,507 bp from 18 acute-phase and 11 chronically infected subjects were analyzed. Acute-phase sequences diversified essentially randomly, except for the poly(U/UC) tract, which was subject to polymerase slippage. Fourteen acute-phase subjects were productively infected by more than one genetically distinct virus, permitting assessment of recombination between replicating genomes. No evidence of recombination was found among 1,589 sequences analyzed. Envelope sequences of T/F genomes lacked transmission signatures that could distinguish them from chronic infection viruses. Among chronically infected subjects, higher nucleotide substitution rates were observed in the poly(U/UC) tract than in envelope hypervariable region 1. Fourteen full-length molecular clones with variable poly(U/UC) sequences corresponding to seven genotype 1a, 1b, 3a, and 4a T/F viruses were generated. Like most unadapted HCV clones, T/F genomes did not replicate efficiently in Huh 7.5 cells, indicating that additional cellular factors or viral adaptations are necessary for in vitro replication. Full-length T/F HCV genomes and their progeny provide unique insights into virus transmission, virus evolution, and virus-host interactions associated with immunopathogenesis. IMPORTANCE: Hepatitis C virus (HCV) infects 2% to 3% of the world's population and exhibits extraordinary genetic diversity. This diversity is mirrored by HIV-1, where characterization of transmitted/founder (T/F) genomes has been instrumental in studies of virus transmission, immunopathogenesis, and vaccine development. Here, we show that despite major differences in genome organization, replication strategy, and natural history, HCV (like HIV-1) diversifies essentially randomly early in infection, and as a consequence, sequences of actual T/F viruses can be identified. This allowed us to capture by molecular cloning the full-length HCV genomes that are responsible for infecting the first hepatocytes and eliciting the initial immune responses, weeks before these events could be directly analyzed in human subjects. These findings represent an enabling experimental strategy, not only for HCV and HIV-1 research, but also for other RNA viruses of medical importance, including West Nile, chikungunya, dengue, Venezuelan encephalitis, and Ebola viruses.


Assuntos
Variação Genética , Genótipo , Hepacivirus/genética , Hepacivirus/isolamento & purificação , Hepatite C/virologia , Clonagem Molecular , Genoma Viral , HIV-1 , Hepacivirus/classificação , Hepatite C/transmissão , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA
6.
J Bacteriol ; 195(2): 261-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23123911

RESUMO

The Rhodobacter capsulatus cbb(3)-type cytochrome c oxidase (cbb(3)-Cox) belongs to the heme-copper oxidase superfamily, and its subunits are encoded by the ccoNOQP operon. Biosynthesis of this enzyme is complex and needs dedicated biogenesis genes (ccoGHIS). It also relies on the c-type cytochrome maturation (Ccm) process, which requires the ccmABCDEFGHI genes, because two of the cbb(3)-Cox subunits (CcoO and CcoP) are c-type cytochromes. Recently, we reported that mutants lacking CcoA, a major facilitator superfamily type transporter, produce very small amounts of cbb(3)-Cox unless the growth medium is supplemented with copper. In this work, we isolated "Cu-unresponsive" derivatives of a ccoA deletion strain that exhibited no cbb(3)-Cox activity even upon Cu supplementation. Molecular characterization of these mutants revealed missense mutations in the ccmA or ccmF gene, required for the Ccm process. As expected, Cu-unresponsive mutants lacked the CcoO and CcoP subunits due to Ccm defects, but remarkably, they contained the CcoN subunit of cbb(3)-Cox. Subsequent construction and examination of single ccm knockout mutants demonstrated that membrane insertion and stability of CcoN occurred in the absence of the Ccm process. Moreover, while the ccm knockout mutants were completely incompetent for photosynthesis, the Cu-unresponsive mutants grew photosynthetically at lower rates and produced smaller amounts of cytochromes c(1) and c(2) than did a wild-type strain due to their restricted Ccm capabilities. These findings demonstrate that different levels of Ccm efficiency are required for the production of various c-type cytochromes and reveal for the first time that maturation of the heme-Cu-containing subunit CcoN of R. capsulatus cbb(3)-Cox proceeds independently of that of the c-type cytochromes during the biogenesis of this enzyme.


Assuntos
Vias Biossintéticas/genética , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Mutação de Sentido Incorreto , Rhodobacter capsulatus/enzimologia , Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Técnicas de Inativação de Genes , Fotossíntese , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/crescimento & desenvolvimento , Rhodobacter capsulatus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...