Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Microbiol ; 14: 1120263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007532

RESUMO

Lactic acid bacteria are generally regarded as alternatives to antibiotics in livestock and poultry farming, especially Lactobacillus strains, which are safe and have probiotic potential. Although Lactobacillus salivarius has long been proposed to be a probiotic, the understanding of the roles of this species is still in its infancy. Here, a strain of L. salivarius CGMCC20700 isolated from the intestinal mucosa of Yunnan black-bone chicken broilers was investigated in the context of its safety and probiotic characteristics by whole-genome sequencing in parallel with phenotypic analysis. Whole-genome sequencing results showed that L. salivarius CGMCC20700 has a single scaffold of 1,737,577 bp with an average guanine-to-cytosine (GC) ratio of 33.51% and 1,757 protein-coding genes. The annotation of Clusters of Orthologous Groups (COG) classified the predicted proteins from the assembled genome as possessing cellular, metabolic, and information-related functions. Sequences related to risk assessment, such as antibiotic resistance and virulence genes, were identified, and the strain was further confirmed as safe according to the results of antibiotic resistance, hemolytic, and acute oral toxicology tests. Two gene clusters of antibacterial compounds and broad-spectrum antimicrobial activity were identified using genome mining tools and antibacterial spectrum tests. Stress resistance genes, active stressor removal genes, and adhesion related genes that were identified and examined with various phenotypic assays (such as stress tolerance tests in acids and bile salts and auto aggregation and hydrophobicity assays). The strain showed a high survival rate in the presence of bile salts and under acidic conditions and exhibited significant auto aggregation capacity and hydrophobicity. Overall, L. salivarius CGMCC20700 demonstrated excellent safety and probiotic potential at both the genomic and physiological levels and can be considered an appropriate candidate probiotic for livestock and poultry farming.

3.
Meat Sci ; 196: 109045, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36434981

RESUMO

Antibacterial activity and mechanism of action of bacteriocins against bacteria that cause pork contamination remain unclear. Here, antibacterial activity of bacteriocin LFX01 against two important indicator strains (i.e., Staphylococcus aureus and Escherichia coli) and its mechanism of action were investigated. The results showed antibacterial activity of LFX01 against growth and biofilm formation of S. aureus_26 (strain 2612:1606BL1486) and E. coli_02 (strain CMCC(B)44102). Additionally, the results demonstrated that LFX01 could decrease cell metabolic activity, disrupt cell membrane permeability and integrity, and trigger leakage of intracellular contents (e.g., K+, ATP, and lactic dehydrogenase). Furthermore, gel retardation showed that LFX01 could bind to the genomic DNA of indicator strains, disrupting DNA structure. These results uncovered mechanism of action of LFX01 against indicator strains from physiological and phenotypic levels. When applied to the surface of fresh pork models, the antibacterial activity of LFX01 against indicator strains was further confirmed. These findings suggested that LFX01 could be a potential pork preservative for controlling foodborne pathogens.


Assuntos
Bacteriocinas , Carne de Porco , Carne Vermelha , Suínos , Animais , Staphylococcus aureus , Escherichia coli , Bacteriocinas/farmacologia , Antibacterianos/farmacologia
4.
Front Microbiol ; 13: 1014970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386721

RESUMO

As a fish unique to Yunnan Province in China, Sinocyclocheilus grahami hosts abundant potential probiotic resources in its intestinal tract. However, the genomic characteristics of the probiotic potential bacteria in its intestine and their effects on S. grahami have not yet been established. In this study, we investigated the functional genomics and host response of a strain, Lactobacillus salivarius S01, isolated from the intestine of S. grahami (bred in captivity). The results revealed that the total length of the genome was 1,737,623 bp (GC content, 33.09%), comprised of 1895 genes, including 22 rRNA operons and 78 transfer RNA genes. Three clusters of antibacterial substances related genes were identified using antiSMASH and BAGEL4 database predictions. In addition, manual examination confirmed the presence of functional genes related to stress resistance, adhesion, immunity, and other genes responsible for probiotic potential in the genome of L. salivarius S01. Subsequently, the probiotic effect of L. salivarius S01 was investigated in vivo by feeding S. grahami a diet with bacterial supplementation. The results showed that potential probiotic supplementation increased the activity of antioxidant enzymes (SOD, CAT, and POD) in the hepar and reduced oxidative damage (MDA). Furthermore, the gut microbial community and diversity of S. grahami from different treatment groups were compared using high-throughput sequencing. The diversity index of the gut microbial community in the group supplemented with potential probiotics was higher than that in the control group, indicating that supplementation with potential probiotics increased gut microbial diversity. At the phylum level, the abundance of Proteobacteria decreased with potential probiotic supplementation, while the abundance of Firmicutes, Actinobacteriota, and Bacteroidota increased. At the genus level, there was a decrease in the abundance of the pathogenic bacterium Aeromonas and an increase in the abundance of the potential probiotic bacterium Bifidobacterium. The results of this study suggest that L. salivarius S01 is a promising potential probiotic candidate that provides multiple benefits for the microbiome of S. grahami.

5.
Pathogens ; 11(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36297135

RESUMO

Toxoplasma gondii is a worldwide food-borne protozoa that has harmful influences on animal and human health. Raw milk containing T. gondii has been considered as one of the possible infectious sources for humans. Although China is one of the world's leading milk consumers, there is still no study to investigate the seroprevalence of T. gondii in raw cow milk in China; especially for cows in rural areas. Thus, we conducted this study to examine the specific anti-T. gondii IgG-antibody in the raw milk and sera of domestic cows in China. In total, 894 cows were randomly selected from rural areas in northeastern China. The positive rate of T. gondii in the milk and serum samples were 6.38% (57/894) and 7.16% (64/894), respectively. Moreover, a history of abortion (OR = 2.03, 95% CI: 1.11-3.72, p = 0.022) was identified as the only risk factor for T. gondii infection in the studied cows. This study investigated the seroprevalence of T. gondii in the raw milk and sera of cows in China; it provided timely and useful data for public health and food safety, especially in rural areas.

6.
J Dairy Sci ; 105(12): 9463-9475, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36270872

RESUMO

Phenyllactic acid (PLA) has been demonstrated to possess antibacterial activity and capacity to prolong food shelf life. However, studies on the performance of PLA in inhibiting Staphylococcus aureus and its effectiveness when applied to dairy products are largely lacking. Here, antibacterial activity (planktonic and biofilm states) of PLA against S. aureus CICC10145 (S. aureus_45) were investigated. The results showed that PLA inhibited growth of S. aureus_45 and formation of S. aureus_45 biofilm. Next, the antibacterial action target of PLA was uncovered from both physiological and phenotypic perspectives. The results showed that PLA decreased cell metabolic activity and cell viability, damaged cell membrane integrity, triggered leakage of intracellular contents (DNA, proteins, and ATP), and caused oxidative stress damage and morphological deformation of S. aureus_45. In practical application, the antibacterial activity of PLA against S. aureus_45 cells was further confirmed in skim milk and cheese as dairy food models, and the antibacterial effects can be adequately maintained during storage for 21 d, at least at 4°C. These findings suggested that PLA could be a potential candidate for controlling S. aureus outgrowth in dairy foods.


Assuntos
Queijo , Infecções Estafilocócicas , Animais , Staphylococcus aureus , Queijo/microbiologia , Leite/microbiologia , Infecções Estafilocócicas/veterinária , Antibacterianos/farmacologia , Poliésteres
7.
Zhen Ci Yan Jiu ; 47(5): 466-70, 2022 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-35616423

RESUMO

Alzheimer's disease (AD), also called senile dementia, is a neurodegenerative disease, characterized by progressive memory and cognitive impairment and different degrees of behavior-mental dysfunction. Clinical trials displayed that acupuncture therapy is effective in relieving symptoms of AD patients. In recent years, many experimental studies have been conducted in SAMP8 mice to explore the underlying mechanisms of acupuncture in improving AD. Results showed that acupuncture therapy can intervene the central pathological process of AD in multiple approaches, including reducing formation of cerebral ß amyloid protein and promoting its removal, intervening the phosphorylation process of Tau protein, improving mitochondrial and synaptic structure, enhancing autophagy activity, accelerating cerebral blood flow, and increasing the levels of estrogen content, and improving the learning and memory ability, etc.


Assuntos
Terapia por Acupuntura , Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
8.
J Food Sci ; 87(6): 2718-2731, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35470896

RESUMO

Bacteriocins inhibit various foodborne bacteria in planktonic and biofilm forms. However, bacteriocins with antibacterial and antibiofilm activity against Staphylococcus argenteus, a pathogen that can cause food poisoning, are still poorly known. Here, the novel bacteriocin LSB1 derived from Lactobacillus plantarum CGMCC 1.12934 was purified and characterized extensively. LSB1 had a molecular weight of 1425.78 Da and an amino acid sequence of YIFVTGGVVSSLGK. Moreover, LSB1 exhibited excellent stability under heat and acid-base stress and presented sensitivity to pepsin and proteinase K. LSB1 exhibited an extensive antimicrobial spectrum against both Gram-positive and Gram-negative bacteria. Minimum inhibitory concentration of LSB1 against S. argenteus_70917 was 10.36 µg/ml, which was lower than that of most of the previously found bacteriocins against Staphylococcus strains. Furthermore, LSB1 significantly inhibited S. argenteus_70917 planktonic cells (p < 0.01) and decreased their viability. Scanning electron microscopy analysis revealed that cell membrane permeability of S. argenteus_70917 upon exposure to LSB1 showed leakage of cytoplasmic contents and rupture, leading to cell death. In addition, biofilm formation ability of S. argenteus_70917 was significantly (p < 0.01) impaired by LSB1, with the percent inhibition of 35% at 10 µg/ml and 80% at 20 µg/ml. Overall, this study indicates that LSB1 can be considered a potential antibacterial agent in the control of S. argenteus in both planktonic and biofilm states. PRACTICAL APPLICATION: Foodborne pathogenic bacteria, such as Staphylococcus argenteus, and their biofilms represent potential risks for food safety. In recent years, customers' demand for "natural" products has increased food control. This study describes the novel bacteriocin LSB1 produced by the lactic acid bacterium species Lactobacillus plantarum. LSB1 showed strong antibacterial and antibiofilm activity against S. argenteus as well as thermal and acid-alkaline stability. Furthermore, the mechanisms of action of LSB1 on S. argenteus were preliminarily explored. These results indicate that LSB1 might be potentially used as an effective and natural food preservative.


Assuntos
Bacteriocinas , Lactobacillus plantarum , Antibacterianos/química , Bacteriocinas/química , Biofilmes , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Lactobacillus plantarum/química , Staphylococcus
9.
Chin J Integr Med ; 28(3): 272-280, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35230607

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases among the elderly and it accounts for nearly 80% of all dementias. The pathogenesis of AD is complicated and enigmatic thus far. The mitochondrial cascade hypothesis assumes that mitochondrial damage may mediate, drive, or contribute to a variety of AD pathologies and may be the main factor in late-onset AD. Currently, there are no widely recognized drugs able to attenuate mitochondrial damage in AD. Notably, increasing evidence supports the efficacy of acupuncture for improving the mitochondrial structure and protecting mitochondrial functions in AD. This review reports the mechanisms by which acupuncture regulates mitochondrial dynamics, energy metabolism, calcium homeostasis and apoptosis. In conclusion, these findings suggest that AD mitochondrial dysfunction represents a reasonable therapeutic target and acupuncture could play a significant role in preventing and treating AD.


Assuntos
Terapia por Acupuntura , Doença de Alzheimer , Idoso , Doença de Alzheimer/tratamento farmacológico , Apoptose , Humanos , Mitocôndrias/metabolismo
10.
J Dairy Sci ; 105(3): 2094-2107, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35180941

RESUMO

Staphylococcus aureus and its biofilm have emerged as a significant threat to the safety of dairy products. In recent years, lactic acid bacteria (LAB) bacteriocins have been widely acknowledged as the potential natural antibacterial substance in food biopreservation due to their excellent antibacterial effects. However, few LAB bacteriocins with antibacterial and antibiofilm activity against S. aureus have been reported in dairy products. In the present study, a novel bacteriocin LSX01 of Lactobacillus paracasei LS-6 isolated from a traditional fermented yogurt produced in Yunnan, China, was purified and characterized extensively. The LSX01 possessed a molecular weight of 967.49 Da and an AA sequence of LDQAGISYT. The minimum inhibitory concentration of LSX01 against S. aureus_45 was 16.90 µg/mL, which was close to or lower than the previously reported bacteriocins. The LSX01 exhibited an extensive antimicrobial spectrum against both gram-positive and gram-negative bacteria. Moreover, LSX01 exhibited excellent tolerance to heat and acid-base treatments, and sensitivity to the proteolytic enzymes, such as pepsin and proteinase K. Furthermore, the treatment of S. aureus_45 planktonic cells with LSX01 significantly reduced their metabolic activity and disrupted the cell membrane integrity. Scan electron microscopy results demonstrated that LSX01 induced cytoplasmic content leakage and cell deformation. Additionally, biofilm formation of S. aureus_45 was also significantly inhibited by LSX01. Overall, the results suggested that the novel LAB bacteriocin LSX01 possessed antibacterial activity and antibiofilm activity against S. aureus and, hence, could have potential for improving safety of dairy products.


Assuntos
Bacteriocinas , Lacticaseibacillus paracasei , Animais , Antibacterianos/metabolismo , Bacteriocinas/farmacologia , Biofilmes , China , Bactérias Gram-Negativas , Lactobacillus/metabolismo , Lacticaseibacillus paracasei/metabolismo , Staphylococcus aureus , Iogurte
11.
Signal Transduct Target Ther ; 6(1): 438, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952914

RESUMO

Messenger RNA (mRNA) vaccine technology has shown its power in preventing the ongoing COVID-19 pandemic. Two mRNA vaccines targeting the full-length S protein of SARS-CoV-2 have been authorized for emergency use. Recently, we have developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor-binding domain (RBD) of SARS-CoV-2 (termed ARCoV), which confers complete protection in mouse model. Herein, we further characterized the protection efficacy of ARCoV in nonhuman primates and the long-term stability under normal refrigerator temperature. Intramuscular immunization of two doses of ARCoV elicited robust neutralizing antibodies as well as cellular response against SARS-CoV-2 in cynomolgus macaques. More importantly, ARCoV vaccination in macaques significantly protected animals from acute lung lesions caused by SARS-CoV-2, and viral replication in lungs and secretion in nasal swabs were completely cleared in all animals immunized with low or high doses of ARCoV. No evidence of antibody-dependent enhancement of infection was observed throughout the study. Finally, extensive stability assays showed that ARCoV can be stored at 2-8 °C for at least 6 months without decrease of immunogenicity. All these promising results strongly support the ongoing clinical trial.


Assuntos
Vacinas contra COVID-19/farmacologia , COVID-19/imunologia , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de mRNA/farmacologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Humanos , Macaca fascicularis , Células Vero , Vacinas de mRNA/imunologia
12.
Microb Pathog ; 161(Pt B): 105268, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34748901

RESUMO

Goat milk is considered as one of the most suitable substitute for human milk, especially for children, the aged and those with cow milk allergies. Consumption of raw or unpasteurized goat milk has been known to be a potential route of Toxoplasma gondii infection for human beings. However, no studies have been carried out to detect T. gondii in goat milk in China. Thus, this stuy was firstly carried out to detect T. gondii IgG antibody in domestic goat's serum and milk during lactation by a commercial validated ELISA kit in China. In total, 10.49% (66/629) serum samples and 9.70% (61/629) milk samples randomly collected from Shandong and Jilin provinces were seropositive for anti-T. gondii IgG, respectively. A high correlation of S/P% value was obtained between serum and milk samples (Spearman's coefficient = 0.891, p-value <0.001 and Kendall's tau = 0.724, p-value < 0.001). Statistical analysis showed that history of abortion, source of water and source of fodder were considered to be highly related to the T. gondii infection in the investigated domestic goats. The present results provide important information for the control and prevention of toxoplasmosis in goats and human beings in China.


Assuntos
Toxoplasma , Toxoplasmose Animal , Idoso , Animais , Anticorpos Antiprotozoários , Bovinos , China/epidemiologia , Feminino , Cabras , Humanos , Lactação , Leite , Gravidez , Estudos Soroepidemiológicos , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/epidemiologia
13.
ACS Synth Biol ; 10(11): 2833-2841, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34734710

RESUMO

Efficient enabling technology is required for synthetic biology in Streptomyces due to its natural product reservoir. Though the CRISPR-Cas9 system is powerful for genome editing in this genus, the proposed Cas9 toxicity has limited its application. Here on the basis of previous inducible Cas9 expression at the transcriptional and translational levels coupled with atpD overexpression, a Cas9 cognate inhibitor AcrIIA4 was further introduced to fine-tune the Cas9 activity. In both laboratory and industrial Streptomyces species, we showed that, compared to the constitutively expressed Cas9, incorporating AcrIIA4 increased the conjugation efficiency from 700- to 7000-fold before induction, while a comparable 65%-90% editing efficiency was obtained even on multiple loci for simultaneous deletion after Cas9 expression was induced, along with no significant off-targets. Thus, AcrIIA4 could be a modulator to control Cas9 activity to significantly improve genome editing, and this new toolkit would be widely adaptable and fasten genetic engineering in Streptomyces.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Streptomyces/genética , Engenharia Genética/métodos , RNA Guia de Cinetoplastídeos/genética
14.
Saudi J Biol Sci ; 28(9): 5011-5016, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466076

RESUMO

The main aim of this study is to analyze antioxidant properties of Polygonatum odoratum fermented with bacteria, fungi and yeast. Antioxidant activities (1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, hydroxyl radical scavenging, and anti-lipid peroxidation abilities) were assessed in samples of flavones isolated from fermented P. odoratum (Mill.) druce samples. Fermentations using Lactobacillus, yeast and Aspergillus were investigated. Results showed that the antioxidant ability of Polygonatum odoratum flavones was decreased by the fermentation of Lactobacillus and yeast. Aspergillus niger fermentation improved the antioxidant ability of P. odoratum flavones. In this study, effective antioxidant activity was achieved in flavones fermented with Aspergillus niger than yeast and Lactobacillus species.

15.
Front Microbiol ; 12: 779315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069481

RESUMO

Few bacteriocins with antibacterial activity against Shigella flexneri have been reported. Here, a novel bacteriocin (LFX01) produced by Lactiplantibacillus plantarum strain LF-8 from the intestine of tilapia was purified and extensively characterized. LFX01 possesses a molecular weight of 1049.56 Da and an amino acid sequence of I-T-G-G-P-A-V-V-H-Q-A. LFX01 significantly inhibited S. flexneri strain 14 (S. flexneri_14) growth. Moreover, it exhibited excellent stability under heat and acid-base stress, and presented sensitivity to a variety of proteases, such as proteinase K, pepsin, and trypsin. The minimum inhibitory concentration (MIC) of LFX01 against S. flexneri_14 was 12.65 µg/mL, which was smaller than that of most of the previously found bacteriocins. Furthermore, LFX01 significantly inhibited (p < 0.05) S. flexneri_14 cells and decreased their cell viability. In addition, LFX01 could significantly (p < 0.05) inhibit biofilm formation of S. flexneri_14. Scanning electron microscopy analysis presented that the cell membrane permeability of S. flexneri_14 was demolished by LFX01, leading to cytoplasmic contents leakage and cell rupture death. In summary, a novel bacteriocin of lactic acid bacteria (LAB) was found, which could effectively control S. flexneri in both planktonic and biofilm states.

16.
J Hazard Mater ; 401: 123409, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32763701

RESUMO

Larval aquatic fireflies in fresh water are adversely affected by water pollutants such as benzo(a)pyrene (BaP). However, their response to BaP stress at the microRNA (miRNA)-regulatory level remains unknown. Here, transcriptomes containing 31,872 genes and six miRNA transcriptional profiles were obtained for Aquatica wuhana larvae, and comparative analysis was performed between larvae exposed to BaP (0.01 mg/L) and unexposed controls. Fifteen of 114 miRNAs identified via bioinformatics were detected as differentially expressed (DEMs) upon BaP exposure. Analysis results of predicted target genes of DEM suggests that BaP exposure primarily triggered transcriptional changes of miRNA associated with five major regulatory categories: 1) osmotic balance, 2) energy metabolic efficiency, 3) development, 4) xenobiotic metabolism (oxidative stress), and 5) innate immune response. Based on six innate immune- and xenobiotic metabolism-related pathways enriched by the predicted DEM targets, 11 key BaP-responsive DEMs were further screened to investigate dynamic changes of expression in response to BaP stress at five time points, and also to validate the miRNA sequencing data using quantitative real-time PCR. This study provides valuable information for the protection of firefly resources and supplements the understanding of miRNA regulatory mechanisms in response to water deterioration.


Assuntos
Besouros , MicroRNAs , Poluentes Químicos da Água , Animais , Benzo(a)pireno/toxicidade , Besouros/genética , Vaga-Lumes , MicroRNAs/genética , Transcriptoma , Poluentes Químicos da Água/toxicidade
17.
Front Physiol ; 11: 555233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123022

RESUMO

Aquatic fireflies are important indicators of the quality of freshwater environments and key models for research on insect adaptation to freshwater environments. For these investigations, gene expression analyses using quantitative real-time PCR are heavily dependent on reliable reference genes. In this study, based on a transcriptome assembly and annotation for the aquatic firefly Aquatica leii at the adult and larval stages, 10 candidate reference genes (α-tubulin, ß-tubulin, ß-actin, EF1A, SDHA, UBQ, GST, GAPDH, RPS31, and RPL13A) were identified for analyses of expression stability. Quantitative real-time PCR analyses for each candidate reference genes in A. leii was conducted for four developmental stages, four adult tissue types, two adult sexes, and two ecological stressors [adults exposed to five temperatures and larvae exposed to four concentrations of benzo(a)pyrene]. Results were evaluated by three independent algorithms (geNorm, NormFinder, and BestKeeper) and one comparative algorithm (RefFinder). The expression stability of candidate reference genes in A. leii differed under various conditions. Reference genes with the most stable expressions levels in different tissues, temperatures, sexes, developmental stages, and concentrations of benzo(a)pyrene were α-tubulin, GST, ß-actin, ß-tubulin, and α-tubulin, respectively. Furthermore, the optimal normalization factors (NFs) for the quantification of the expression levels of target genes by quantitative real-time PCR analyses of A. leii were identified for each experimental group. In particular, NF = 2 for different tissues (α-tubulin + ß-tubulin), different sexes (ß-actin + EF1A), and larvae exposed to different concentrations of benzo(a)pyrene (α-tubulin + EF1A); NF = 3 for developmental stages (GST + GAPDH + SDHA) and adults exposed to different temperatures (ß-tubulin + EFA + GST). In addition, we surveyed the expression profiles of two target genes (CYP3A and CSP8) in larvae exposed to different concentrations of benzo(a)pyrene and in different adult tissues. The results further validated the reliability of the reference genes. The optimal reference genes for various experimental conditions identified in these analyses provide a useful tool for ecological studies of aquatic fireflies.

18.
Anticancer Res ; 39(6): 2729-2737, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31177108

RESUMO

BACKGROUND/AIM: Salivary adenoid cystic carcinoma (SACC) is the most common malignancy of the salivary gland with a poor prognosis and survival. The present study aimed to investigate the role of histone methyltransferase WHSC1 in SACC. MATERIALS AND METHODS: Human SACC specimens were evaluated for WHSC1 expression by RT-PCR and immunohistochemistry. The effects of WHSC1 knockdown on SACC cells proliferation, cell cycle, clone and tumorsphere formation, and apoptosis as well as on the expression of related genes were examined. A xenograft mouse model of SACC was used to evaluate the in vivo effects of WHSC1 knockdown on SACC tumorigenesis. RESULTS: WHSC1 expression was up-regulated in human SACC tissues (p<0.01). WHSC1 knockdown in SACC cells significantly inhibited cell proliferation, clone and tumorsphere formation (p<0.05). Cell distribution at the S and G2/M phases was significantly reduced by WHSC1 knockdown (p<0.05). WHSC1 knockdown significantly increased apoptosis of SACC cells (p<0.05). c-Myc, survivin, Bcl-2 and cyclin B1 genes were significantly down-regulated by WHSC1 knockdown cells (p<0.05). WHSC1 knockdown significantly reduced H3K36me2 modification of the MYC gene promoter in SACC cells and tumorigenesis of SACC cells in vivo (p<0.05). CONCLUSION: Knockdown of WHSC1 inhibited cell proliferation, induced apoptosis and affected tumorigenesis in SACC.


Assuntos
Carcinoma Adenoide Cístico/patologia , Técnicas de Silenciamento de Genes/métodos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Neoplasias das Glândulas Salivares/patologia , Regulação para Cima , Animais , Apoptose , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/metabolismo , Transdução de Sinais
19.
Ying Yong Sheng Tai Xue Bao ; 29(4): 1273-1282, 2018 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-29726238

RESUMO

Long-term continuous ratooning of tea could lead to serious soil acidification, nutritional imbalance, and the deterioration of the rhizosphere micro-ecological environment. Understanding the effects of biochar and sheep manure on the growth of tea plants and the rhizosphere microbial community structure and function would provide theoretical basis to improve the soil micro-ecological environment of continuous ratooning tea orchards. Biolog technology combined with phospholipid fatty acid (PLFA) approaches were employed to quantify the effects of biochar (40 t·hm-2) and sheep manure on the growth of 20 years continuous ratooning tea plants, soil chemical properties, and the soil microbial community structure and function. The results showed that after one year treatment, biochar and sheep manure both improved soil pH and nutrition, and significantly enhanced tea production. Compared with the routine fertilizer application (CK), the biochar and sheep manure treatments significantly increased the carbon metabolic activity (AWCD) and microorganism diversity in the rhizosphere soils, and increased the relative utilization of the carbon sources such as amines, carbohydrates, and polymers. The total PLFA concentrations in the biochar and sheep manure treatments were significantly increased by 20.9% and 47.5% than that in the routine fertilizers application. In addition, sheep manure treatment significantly decreased the saturated/monosaturated fatty acids In conclusion, biochar and sheep manure could alleviate soil acidification, enhance soil nutrition and the growth of tea plants. Both management strategies could increase the soil microbial activity and biomass, enhance the diversity, and improve the microbial community structure, which could be taken as effective measures to regulate the rhizosphere micro-environment of tea plants.


Assuntos
Carvão Vegetal , Rizosfera , Microbiologia do Solo , Animais , Biomassa , Camellia sinensis , Carbono , Fertilizantes , Esterco , Ovinos , Solo , Chá
20.
Cell Death Dis ; 7(10): e2402, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27711077

RESUMO

Dysfunction of nuclear factor-κB (NF-κB) signaling has been causally associated with numerous human malignancies. Although the NF-κB family of genes has been implicated in endometrial carcinogenesis, information regarding the involvement of central regulators of NF-κB signaling in human endometrial cancer (EC) is limited. Here, we investigated the specific roles of canonical and noncanonical NF-κB signaling in endometrial tumorigenesis. We found that NF-κB RelB protein, but not RelA, displayed high expression in EC samples and cell lines, with predominant elevation in endometrioid adenocarcinoma (EEC). Moreover, tumor cell-intrinsic RelB was responsible for the abundant levels of c-Myc, cyclin D1, Bcl-2 and Bcl-xL, which are key regulators of cell cycle transition, apoptosis and proliferation in EEC. In contrast, p27 expression was enhanced by RelB depletion. Thus, increased RelB in human EC is associated with enhanced EEC cell growth, leading to endometrial cell tumorigenicity. Our results reveal that regulatory RelB in noncanonical NF-κB signaling may serve as a therapeutic target to block EC initiation.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/patologia , Ciclo Celular , NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelB/metabolismo , Animais , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Fase G1/genética , Humanos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Fenótipo , Fase S/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...