Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Rev Sci Instrum ; 95(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722213

RESUMO

In the experimental advanced superconducting tokamak (EAST), a novel ion cyclotron range of frequency (ICRF) antenna-based diagnostic system is designed to measure ion cyclotron emission (ICE) driven by high-energy ions. The diagnostic system includes ICRF antenna straps, a three-tune impedance matching system, a coaxial switching system, a direct current block, and a data acquisition and storage system. Using the coaxial switching system, the ICRF antenna can be switched from the heating mode to the coupling mode between two discharges. In the 2023 EAST experiment campaign, core ICE was observed using the ICRF antenna-based diagnostic system during neutron beam injection heating, and the obtained results agreed well with the signal detected by the previous high-frequency B-dot probe-based diagnostic system.

2.
Nat Commun ; 15(1): 3717, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697983

RESUMO

The chiral antiferromagnetic (AFM) materials, which have been widely investigated due to their rich physics, such as non-zero Berry phase and topology, provide a platform for the development of antiferromagnetic spintronics. Here, we find two distinctive anomalous Hall effect (AHE) contributions in the chiral AFM Mn3Pt, originating from a time-reversal symmetry breaking induced intrinsic mechanism and a skew scattering induced topological AHE due to an out-of-plane spin canting with respect to the Kagome plane. We propose a universal AHE scaling law to explain the AHE resistivity ( ρ A H ) in this chiral magnet, with both a scalar spin chirality (SSC)-induced skew scattering topological AHE term, a s k and non-collinear spin-texture induced intrinsic anomalous Hall term, b i n . We found that a s k and b i n can be effectively modulated by the interfacial electron scattering, exhibiting a linear relation with the inverse film thickness. Moreover, the scaling law can explain the anomalous Hall effect in various chiral magnets and has far-reaching implications for chiral-based spintronics devices.

3.
ACS Pharmacol Transl Sci ; 7(5): 1335-1347, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38751628

RESUMO

Prostate-specific membrane antigen (PSMA), a well-established biological marker for prostate cancer (PCa) imaging and therapy, is overexpressed on the surface of prostate cancer lesions. In this study, a triazole ring was introduced into the linker by click chemistry to generate a HYNIC-derived ligand (T), which exhibited good PSMA affinity (Ki = 2.23 nM). Eight stable 99mTc-labeled complexes, [99mTc]Tc-T-Mn (n = 1-8), with hydrophilic properties were synthesized by incorporating different coligands at high radiochemical yields and purities without purification. The radioligands were concentrated in the kidneys of healthy Kunming male mice and were significantly blocked by the PSMA inhibitor ZJ-43. The uptake of the optimized complex [99mTc]Tc-T-M2 was correlated with PSMA, and it had good PSMA affinity (Kd = 5.42 nM). [99mTc]Tc-T-M2 accumulated on LNCaP (PSMA++) tumors and was significantly blocked by ZJ-43 at 2 h p.i., indicating high PSMA specificity. Relatively suitable kidney uptake was beneficial for reducing kidneys exposure in patients. SPECT/CT imaging of [99mTc]Tc-T-M2 in LNCaP (PSMA++) or 22Rv1 (PSMA+) tumor-bearing mice revealed high tumor uptake, low background uptake (especially low kidney uptake (49.06 ± 9.20 %ID/g) at 2 h p.i.), and obvious inhibition by ZJ-43, whereas PC-3 (PSMA-) tumors were undetectable. A freeze-dried [99mTc]Tc-T-M2 kit was successfully developed (T-M2 kit). Preliminary clinical trials showed that [99mTc]Tc-T-M2 clearly identified small prostate cancer lesions and has potential for clinical application.

4.
J Org Chem ; 89(10): 6684-6693, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38676651

RESUMO

In this study, we outline a general method for the construction of various (furyl)methyl disulfides from acetyl-masked disulfide nucleophiles and ene-yne-ketones. This protocol is feathered by metal-free, simple experimental conditions, high efficiency, and scalable potential, which make it attractive and practical.

5.
Food Chem ; 450: 139298, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615532

RESUMO

A convenient, efficient, and green dispersive liquid-liquid microextraction based on the in situ formation of solidified supramolecular solvents combined with high performance liquid chromatography was developed for the determination of four phenylurea herbicides in liquid samples, including monuron, monolinuron, isoproturon, and chlortoluron. Herein, a novel supramolecular solvent was prepared by the in situ reaction of [P4448]Br and NH4PF6, which had the advantages of low melting point, high density, and good dispersibility. In addition, the microscopic morphology and physical properties of supramolecular solvent were characterized, and the extraction conditions were optimized. The results showed that the analytes had good linearity (R2 > 0.9998) within the linear range. The limits of detection and quantification for the four phenylurea herbicides were in the range of 0.13-0.19 µg L-1 and 0.45-0.65 µg L-1, respectively. The prepared supramolecular solvent is suitable for the efficient extraction of phenylurea herbicides in water, fruit juice, and milk.

6.
Nat Commun ; 15(1): 2043, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448561

RESUMO

Orbitronics is based on the use of orbital currents as information carriers. Orbital currents can be generated from the conversion of charge or spin currents, and inversely, they could be converted back to charge or spin currents. Here we demonstrate that orbital currents can also be generated by femtosecond light pulses on Ni. In multilayers associating Ni with oxides and nonmagnetic metals such as Cu, we detect the orbital currents by their conversion into charge currents and the resulting terahertz emission. We show that the orbital currents extraordinarily predominate the light-induced spin currents in Ni-based systems, whereas only spin currents can be detected with CoFeB-based systems. In addition, the analysis of the time delays of the terahertz pulses leads to relevant information on the velocity and propagation length of orbital carriers. Our finding of light-induced orbital currents and our observation of their conversion into charge currents opens new avenues in orbitronics, including the development of orbitronic terahertz devices.

7.
J Control Release ; 368: 663-675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492862

RESUMO

Interleukin-2 (IL-2) exhibits the unique capacity to modulate immune functions, potentially exerting antitumor effects by stimulating immune responses, making it highly promising for immunotherapy. However, the clinical use of recombinant IL-2 protein faces significant limitations due to its short half-life and systemic toxicity. To overcome these challenges and fully exploit IL-2's potential in tumor immunotherapy, this study reports the development of a tumor-activated IL-2 mRNA, delivered via lipid nanoparticles (LNPs). Initially, ionizable lipid U-101 derived nanoparticles (U-101-LNP) were prepared using microfluidic technology. Subsequent in vitro and in vivo delivery tests demonstrated that U-101-LNP achieved more effective transfection than the approved ALC-0315-LNP. Following this, IL-2F mRNAs, encoding fusion proteins comprising IL-2, a linker, and CD25 (IL-2Rα), were designed and synthesized through in vitro transcription. A cleavable linker, consisting of the peptide sequence SGRSEN↓IRTA, was selected for cleavage by matrix metalloproteinase-14 (MMP-14). IL-2F mRNA was then encapsulated in U-101-LNP to create U-101-LNP/IL-2F mRNA complexes. After optimization, assessments of expression efficiency, masking, and release characteristics revealed that IL-2F with linker C4 demonstrated superior performance. Finally, the antitumor activity of IL-2F mRNA was evaluated. The results indicated that U-101-LNP/IL-2F mRNA achieved the strongest antitumor effect, with an inhibition rate of 70.3%. Immunohistochemistry observations revealed significant expressions of IL-2, IFN-γ, and CD8, suggesting an up-regulation of immunomodulation in tumor tissues. This effect could be ascribed to the expression of IL-2F, followed by the cleavage of the linker under the action of MMP-14 in tumor tissue, which sustainably releases IL-2. H&E staining of tissues treated with U-101-LNP/IL-2F mRNA showed no abnormalities. Further evaluations indicated that the U-101-LNP/IL-2F mRNA group maintained proper levels of inflammatory factors without obvious alterations in liver and renal functions. Taken together, the U-101-LNP/IL-2F mRNA formulation demonstrated effective antitumor activity and safety, which suggests potential applicability in clinical immunotherapy.


Assuntos
Lipossomos , Nanopartículas , Neoplasias , Humanos , Interleucina-2/genética , Metaloproteinase 14 da Matriz , Imunoterapia , Neoplasias/terapia
8.
Mol Neurobiol ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433165

RESUMO

As one of the most serious complications of sepsis, sepsis-associated encephalopathy has not been effectively treated or prevented. Exosomes, as a new therapeutic method, play a protective role in neurodegenerative diseases, stroke and traumatic brain injury in recent years. The purpose of this study was to investigate the role of exosomes in glutamate (Glu)-induced neuronal injury, and to explore its mechanism, providing new ideas for the treatment of sepsis-associated encephalopathy. The neuron damage model induced by Glu was established, and its metabolomics was analyzed and identified. BV2 cells were induced to differentiate into M1 and M2 subtypes. After the exosomes from both M1-BV2 cells and M2-BV2 cells were collected, exosome morphological identification was performed by transmission electron microscopy and exosome-specific markers were also detected. These exosomes were then cocultured with HT22 cells. CCK-8 method and LDH kit were used to detect cell viability and toxicity. Cell apoptosis, mitochondrial membrane potential and ROS content were respectively detected by flow cytometry, JC-1 assay and DCFH-DA assay. MiR-124-3p expression level was detected by qRT-PCR and Western blot. Bioinformatics analysis and luciferase reporter assay predicted and verified the relationship between miR-124-3p and ROCK1 or ROCK2. Through metabolomics, 81 different metabolites were found, including fructose, GABA, 2, 4-diaminobutyric acid, etc. The enrichment analysis of differential metabolites showed that they were mainly enriched in glutathione metabolism, glycine and serine metabolism, and urea cycle. M2 microglia-derived exosomes could reduce the apoptosis, decrease the accumulation of ROS, restore the mitochondrial membrane potential and the anti-oxidative stress ability in HT22 cells induced by Glu. It was also found that the protective effect of miR-124-3p mimic on neurons was comparable to that of M2-EXOs. Additionally, M2-EXOs might carry miR-124-3p to target ROCK1 and ROCK2 in neurons, affecting ROCK/PTEN/AKT/mTOR signaling pathway, and then reducing Glu-induced neuronal apoptosis. M2 microglia-derived exosomes may protect HT22 cells against Glu-induced injury by transferring miR-124-3p into HT22 cells, with ROCK being a target gene for miR-124-3p.

9.
Sci Total Environ ; 923: 171477, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460686

RESUMO

Mapping vegetation formation types in large areas is crucial for ecological and environmental studies. However, this is still challenging to distinguish similar vegetation formation types using existing predictive vegetation mapping methods, based on commonly used environmental variables and remote sensing spectral data, especially when there are not enough training samples. To solve this issue, we proposed a predictive vegetation mapping method by integrating an advanced machine learning algorithm and knowledge in an early coarse-scale vegetation map (VMK). First, we implemented classification using the random forest algorithm by integrating the early vegetation map as an auxiliary feature (VMF). Then, we determined the rationality of classified vegetation types and distinguished the confusing types, respectively, based on the knowledge of the spatial distributions and hierarchies of vegetation. Finally, we replaced each recognized unreasonable vegetation type with its corresponding reasonable vegetation type. We implemented the new method in upstream of the Yellow River based on GaoFen-1 satellite images and other environmental variables (i.e., topographical and climate variables). Results showed that the overall accuracy using the VMK method ranged from 67.7 % to 76.8 %, which was 10.9 % to 13.4 % and 3.2 % to 6.6 %, respectively, higher than that of the method without the early vegetation map (NVM) and the VMF method, based on cross-validation with 20 % to 60 % random training samples. The spatial details of the vegetation map using the VMK method were also more reasonable compared to the NVM and VMF methods. These results indicated that the VMK method can distinctly improve the mapping accuracy at the vegetation formation level by integrating knowledge of existing vegetation maps. The proposed method can largely reduce the requirements on the number of field samples, which is especially important for alpine mountains and arctic region, where collecting training samples is more difficult due to the harsh natural environment.

10.
J Med Chem ; 67(4): 3190-3202, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38320123

RESUMO

Fibroblast activation protein (FAP), which is expressed on the cell membranes of fibroblasts in most solid tumors, has become an important target for tumor diagnosis and treatment. However, previously reported 99mTc-labeled FAPI-04 complexes have high blood uptake, limiting their use in the clinic. In this work, six 99mTc-labeled FAPI-46 derivatives with different linkers (different amino acids, peptides, or polyethylene glycol) were prepared and evaluated. They had good in vitro stability, hydrophilicity, and good specificity for FAP. The biodistribution and MicroSPECT images revealed that they all had high specific tumor uptake for FAP, and their blood uptake was significantly decreased. Among them, [99mTc]Tc-6-1 exhibited the highest target-to-nontarget ratios (tumor/blood: 6.06 ± 1.19; tumor/muscle: 10.26 ± 0.44) and good tumor uptake (16.15 ± 0.83%ID/g), which also had significantly high affinity for FAP, good in vivo stability, and safety. Therefore, [99mTc]Tc-6-1 holds great potential as a promising molecular tracer for FAP tumor imaging.


Assuntos
Quinolinas , Transporte Biológico , Linhagem Celular Tumoral , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Tecnécio/química
11.
J Org Chem ; 89(5): 3590-3596, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364441

RESUMO

Under transition-metal-free conditions, trisulfide dioxides were used as disulfurating reagents to react with a wide range of amides, affording various substituted N-disulfanyl amides in good yields. Furthermore, the gram-scale experiment has confirmed the practicability of this approach.

12.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256119

RESUMO

To develop a novel 99mTc-labeled ubiquicidin 29-41 derivative for bacterial infection single-photon emission computed tomography (SPECT) imaging with improved target-to-nontarget ratio and lower nontarget organ uptake, a series of isocyanide ubiquicidin 29-41 derivatives (CNnUBI 29-41, n = 5-9) with different carbon linkers were designed, synthesized and radiolabeled with the [99mTc]Tc(I)+ core, [99mTc][Tc(I)(CO)3(H2O)3]+ core and [99mTc][Tc(V)N]2+ core. All the complexes are hydrophilic, maintain good stability and specifically bind Staphylococcus aureus in vitro. The biodistribution in mice with bacterial infection and sterile inflammation demonstrated that [99mTc]Tc-CN5UBI 29-41 was able to distinguish bacterial infection from sterile inflammation, which had an improved abscess uptake and a greater target-to-nontarget ratio. SPECT imaging study of [99mTc]Tc-CN5UBI 29-41 in bacterial infection mice showed that there was a clear accumulation in the infection site, suggesting that this radiotracer could be a potential radiotracer for bacterial infection imaging.


Assuntos
Proteínas Ribossômicas , Infecções Estafilocócicas , Animais , Camundongos , Distribuição Tecidual , Infecções Estafilocócicas/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Cianetos , Inflamação/diagnóstico por imagem
13.
Org Lett ; 25(49): 8937-8941, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38054746

RESUMO

In the organic or water phase, acetyl masked disulfide nucleophiles were used as the disulfide source to react with a wide range of epoxides, affording various ß-acetoxy or ß-hydroxyl disulfides in good yields with high regioselectivity. This method features transition-metal-free, simple experimental conditions, high atom economy, and scalable potential, which make it attractive and practical.

14.
ACS Pharmacol Transl Sci ; 6(11): 1681-1691, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37974617

RESUMO

As the "molecule of the century", 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) is a radioactive 18F-labeled glucose derivative with a wide range of applications for positron emission tomography (PET) imaging. Single photon emission computed tomography (SPECT) imaging is widely used, but there is no clinical probe comparable to [18F]FDG. In our previous work, [99mTc]Tc-CN5DG and [99mTc]Tc-CN7DG were successfully developed and achieved high-quality SPECT images. However, they still have the disadvantage of low tumor uptake and/or high uptake by nontarget organs. To develop novel tumor imaging agents with high tumor uptake and excellent tumor/nontarget ratios, in this study, starting from d-glucosamine hydrochloride, four phenyl group-containing isonitrile ligands were designed, synthesized, and radiolabeled with 99mTc. All the complexes had high radiochemical purity and good hydrophilicity and stability. Biodistribution experiments showed that [99mTc]Tc-L4 (i.e., [99mTc]Tc-CNMBDG) had the highest tumor uptake and tumor/background ratios among the four probes. In SPECT imaging studies, the tumor detected by [99mTc]Tc-L4 was more clearly visible than that of [99mTc]Tc-CN7DG because of the inappreciable interference from abdominal uptake. Preliminary clinical studies of [99mTc]Tc-L4 have been conducted and successfully showed the lesion location in a patient with non-small-cell lung cancer. In summary, [99mTc]Tc-L4 is expected to be a promising tumor SPECT imaging agent.

15.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(9): 999-1003, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37803963

RESUMO

Sepsis is a life-threatening organ dysfunction caused by infection that lead to dysregulation of the host response. Sepsis and septic shock with a high mortality threaten human health at present, which are important medical and health problems. Early diagnosis and treatment decision-making for sepsis and septic shock still need to be improved. Exosomes are extracellular vesicles with a diameter of 30-150 nm formed by the fusion of multi-vesicle bodies and cell membranes. Exosomes can effectively transport a variety of bioactive substances such as proteins, lipids, RNA, DNA, and participate in the regulation of inflammatory response, immune response, infection and other pathophysiological processes. In recent years, exosomes have become one of the important methods for the diagnosis and treatment of systemic inflammatory diseases. This article will focus on the basic and clinical research of sepsis, and focus on the research progress of exosomes in the diagnosis and targeted therapy of sepsis.


Assuntos
Exossomos , Vesículas Extracelulares , Sepse , Choque Séptico , Humanos , Choque Séptico/terapia , Exossomos/metabolismo , Sepse/diagnóstico , Sepse/terapia , Vesículas Extracelulares/metabolismo , RNA/metabolismo
16.
Mol Pharm ; 20(9): 4528-4536, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37661815

RESUMO

Cyclin-dependent kinases (CDKs), especially cyclin-dependent kinase 4/6 (CDK4/6), have been targets for the development of specific tumor imaging agents. Palbociclib is a highly selective CDK4/6 inhibitor. In this study, to develop a novel 18F-labeled palbociclib derivative for specific tumor imaging, we designed and synthesized a ligand (NOTA-PBB) consisting of palbociclib as the targeted pharmacophore and NOTA as the macrocyclic bifunctional chelator. The corresponding [18F]AlF-NOTA-PBB complex was prepared with high radiochemical purity (98.4 ± 0.15%) and yield (58.7 ± 4.5%) within 35 min without requiring HPLC purification through a simple one-step 18F-labeling strategy of NOTA-AlF chelation chemistry. The radiotracer was lipophilic (log P = 0.095 ± 0.003) and had good stability in vitro and in vivo. The cellular uptake studies performed on the MCF-7 breast cancer cell line (ER-positive and HER2-negative) showed that radioactive uptake was blocked by preincubating with a molar dose of palbociclib and it had a nanomolar binding affinity to CDK4/6 (IC50 = 16.23 ± 1.84 nM), demonstrating a CDK4/6-mediated uptake mechanism. Its ex vivo biodistribution in nude mice-bearing MCF-7 tumors showed obvious tumor uptake and a high tumor/muscle ratio of [18F]AlF-NOTA-PBB, and tumor uptake was inhibited with 100 µg of palbociclib, demonstrating specific binding to CDK4/6. Radioactivity accumulation in MCF-7 tumors was observed in PET imaging with [18F]AlF-NOTA-PBB. Based on the results of this work, [18F]AlF-NOTA-PBB has the promising capability as a CDK4/6-targeted tumor imaging agent.


Assuntos
Neoplasias , Animais , Camundongos , Quinase 4 Dependente de Ciclina , Camundongos Nus , Distribuição Tecidual , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Quelantes
17.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37765084

RESUMO

When developing novel radiopharmaceuticals, a linker moiety between the chelator and targeting vector can have a crucial influence on adjusting the affinity of the tracer and its biodistribution in organisms. To develop novel 99mTc-labelled hypoxia imaging radiotracers, in this study, five isocyanide-containing 2-nitroimidazole derivatives with different linkers (L1, L2, L3, L4 and L5) were synthesised and radiolabelled with technetium-99m to obtain five stable 99mTc-complexes ([99mTc]Tc-L1, [99mTc]Tc-L2, [99mTc]Tc-L3, [99mTc]Tc-L4 and [99mTc]Tc-L5). Corresponding rhenium analogues of [99mTc]Tc-L1 were synthesised and suggested the structures of these 99mTc-complexes would be a monovalent cation with a technetium (I) core surrounded by six ligands. [99mTc]Tc-L1 is hydrophilic, while the lipophilicities of [99mTc]Tc-L2, [99mTc]Tc-L3, [99mTc]Tc-L4 and [99mTc]Tc-L5 are close. In vitro cell experiments showed that all five novel 99mTc-complexes had higher uptake in hypoxic cells compared with aerobic cells, which indicates the complexes have good hypoxia selectivity. The biodistribution of the five 99mTc-complexes in S180 tumour-bearing mice showed that they all had certain uptake in the tumours. Among them, [99mTc]Tc-L1 had the highest tumour-to-muscle (4.68 ± 0.44) and tumour-to-blood (3.81 ± 0.46) ratios. The introduction of polyethylene glycol (PEG) chains effectively reduced the lipophilicity and decreased uptake by the liver, intestine and blood but also increased clearance from the tumours. In vivo metabolic studies showed [99mTc]Tc-L1 kept intact and remained stable in tumour, blood and urine at 2 h post-injection. The results of SPECT imaging showed that [99mTc]Tc-L1 had significant tumour uptake at 2 h post-injection, but there was still high uptake in abdominal organs such as the liver and kidney, suggesting that this complex needs to be further optimised before being used for tumour hypoxia imaging.

18.
Mol Pharm ; 20(10): 4971-4983, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37699256

RESUMO

mRNA vaccines encoding a single spike protein effectively prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the emergence of SARS-CoV-2 variants leads to a wide range of immune evasion. Herein, a unique trivalent mRNA vaccine based on ancestral SARS-CoV-2, Delta, and Omicron variant spike receptor-binding domain (RBD) mRNAs was developed to tackle the immune evasion of the variants. First, three RBD mRNAs of SARS-CoV-2, Delta, and Omicron were coencapsulated into lipid nanoparticles (LNPs) by using microfluidic technology. After that, the physicochemical properties and time-dependent storage stability of the trivalent mRNA vaccine nanoformulation were tested by using dynamic light scattering (DLS). In vitro, the trivalent mRNA vaccine exhibited better lysosomal escape ability, transfection efficiency, and biocompatibility than did the commercial transfection reagent Lipo3000. In addition, Western blot analyses confirmed that the three RBD proteins can be detected in cells transfected with the trivalent mRNA vaccine. Furthermore, ex vivo imaging analysis indicated that the livers of BALB/c mice had the strongest protein expression levels after intramuscular (IM) injection. Using a prime-boost strategy, this trivalent vaccine elicited robust humoral and T-cell immune responses in both the high-dose and low-dose groups and showed no toxicity in BALB/c mice. Three specific IgG antibodies in the high-dose group against SARS-CoV-2, Delta, and Omicron variants approached ∼1/1,833,333, ∼1/1,866,667, and ∼1/925,000, respectively. Taken together, two doses of inoculation with the trivalent mRNA vaccine may provide broad and effective immunization responses against SARS-CoV-2 and variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , SARS-CoV-2/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Imunização , Vacinas de mRNA , Anticorpos Neutralizantes
19.
Int J Pharm ; 645: 123398, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690658

RESUMO

Polypeptides are a highly promising carrier for delivering hydrophobic drugs, due to their excellent biocompatibility, non-toxicity, and non-immunogenicity. Herein, a redox and pH dual-responsive poly(ethylene glycol)-SS-b-polypeptide micelles encapsulated with disulfide bridged paclitaxel-pentadecanoic acid prodrug was developed for cancer chemotherapy. First of all, disulfide bridged paclitaxel-pentadecanoic acid prodrug (PTX-SS-COOH) and poly(ethylene glycol)-SS-b-polylysine-b-polyphenylalanine (mPEG-SS-b-PLys-b-PPhe, ESLP) were synthesized and confirmed via NMR, MS, FT-IR or GPC. After that, PTX-SS-COOH (PSH) embedded mPEG-SS-b-PLys-b-PPhe (ESLP/PSH) micelles were prepared by mixing method based on electrostatic interactions and hydrophobic forces. For comparison, mPEG-b-PLys-b-PPhe (ELP) was mixed with PTX-SS-COOH to generate another kind of micelles (ELP/PSH). The characterization of ESLP/PSH micelles through dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed a spherical structure with a diameter of approximately 170 nm. It is noteworthy that ESLP/PSH micelles displayed a high drug-loading rate of 22.84%, and excellent stability, which can be attributed to the specific interactions between the prodrug and copolymer. Drug release analysis demonstrated that the micelles exhibited a substantial release of PTX in the presence of GSH at pH 5.0, indicating a pH and redox dual responsiveness. In vivo pharmacokinetic study revealed the ESLP/PSH micelles had increased bioavailability and an extended circulation time. Ultimately, antitumor efficacy and systemic toxicity evaluation in 4 T1 tumor-bearing mice confirmed that ESLP/PSH micelles achieved the highest level of tumor growth inhibition (ca. 83%) and the lowest systemic toxicity in comparison with ELP/PSH micelles and commercialized Taxol®. Taken together, the dual responsive micelles represent a promising PTX formulation with potential clinical application in cancer chemotherapy.


Assuntos
Neoplasias , Pró-Fármacos , Camundongos , Animais , Paclitaxel , Micelas , Espectroscopia de Infravermelho com Transformada de Fourier , Linhagem Celular Tumoral , Polietilenoglicóis/química , Peptídeos , Oxirredução , Dissulfetos , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química
20.
Front Neurosci ; 17: 1235480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600005

RESUMO

Attention and audiovisual integration are crucial subjects in the field of brain information processing. A large number of previous studies have sought to determine the relationship between them through specific experiments, but failed to reach a unified conclusion. The reported studies explored the relationship through the frameworks of early, late, and parallel integration, though network analysis has been employed sparingly. In this study, we employed time-varying network analysis, which offers a comprehensive and dynamic insight into cognitive processing, to explore the relationship between attention and auditory-visual integration. The combination of high spatial resolution functional magnetic resonance imaging (fMRI) and high temporal resolution electroencephalography (EEG) was used. Firstly, a generalized linear model (GLM) was employed to find the task-related fMRI activations, which was selected as regions of interesting (ROIs) for nodes of time-varying network. Then the electrical activity of the auditory-visual cortex was estimated via the normalized minimum norm estimation (MNE) source localization method. Finally, the time-varying network was constructed using the adaptive directed transfer function (ADTF) technology. Notably, Task-related fMRI activations were mainly observed in the bilateral temporoparietal junction (TPJ), superior temporal gyrus (STG), primary visual and auditory areas. And the time-varying network analysis revealed that V1/A1↔STG occurred before TPJ↔STG. Therefore, the results supported the theory that auditory-visual integration occurred before attention, aligning with the early integration framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...