Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39065721

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC), currently ranking as the third most lethal malignancy, poses a grave threat to human health. Ferroptosis, a form of programmed cell demise, has emerged as a promising therapeutic target in HCC treatment. In this study, we investigated the impact of ginsenoside RK1 on ferroptosis induction in HCC cells and elucidated the underlying mechanisms. METHODS: The HCC cell line HepG2 was utilized to evaluate the effects of ginsenoside RK1. Distinct dosages of ginsenoside RK1 (25 µM, 50 µM, and 100 µM) were selected based on half-maximal inhibitory concentration (IC50) values. Cellular viability was assessed using a CCK8 assay, cytotoxicity was measured via lactate dehydrogenase (LDH) release assay, and colony-forming ability was evaluated using the clone formation assay. Various inhibitors targeting apoptosis (Z-VAD-FMK 20 µM), necrosis (Nec-1, 10 µM), and ferroptosis (Fer-1, 10 µM; Lip-1, 1 µM) were employed to assess ginsenoside RK1's impact on cell demise. Intracellular levels of key ions, including glutathione (GSH), malondialdehyde (MDA), and iron ions, were quantified, and the protein expression levels of ferroptosis-related genes were evaluated. The sensitivity of HCC cells to ferroptosis induction by ginsenoside RK1 was examined following the overexpression and silencing of the aforementioned target genes. RESULTS: Ginsenoside RK1 exhibited an inhibitory effect on HCC cells with an IC50 value of approximately 20 µM. It attenuated cellular viability and colony-forming capacity in a dose-dependent manner, concurrently reducing intracellular GSH levels and increasing intracellular Malondialdehyde (MDA) and iron ion contents. Importantly, cell demise induced by ginsenoside RK1 was specifically counteracted by ferroptosis inhibitors. Furthermore, the modulation of Ferroptosis suppressor protein 1 (FSP1) expression influenced the ability of ginsenoside RK1 to induce ferroptosis. FSP1 overexpression or silencing enhanced or inhibited ferroptosis induction by ginsenoside RK1, respectively. CONCLUSIONS: Ginsenoside RK1 enhances ferroptosis in hepatocellular carcinoma through an FSP1-dependent pathway.

2.
Front Immunol ; 15: 1438807, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040097

RESUMO

The non-natriuretic-dependent glutamate/cystine inverse transporter-system Xc- is composed of two protein subunits, SLC7A11 and SLC3A2, with SLC7A11 serving as the primary functional component responsible for cystine uptake and glutathione biosynthesis. SLC7A11 is implicated in tumor development through its regulation of redox homeostasis, amino acid metabolism, modulation of immune function, and induction of programmed cell death, among other processes relevant to tumorigenesis. In this paper, we summarize the structure and biological functions of SLC7A11, and discuss its potential role in tumor therapy, which provides a new direction for precision and personalized treatment of tumors.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Animais
3.
Antioxidants (Basel) ; 13(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38929136

RESUMO

Glutathione (GSH), a prominent antioxidant in organisms, exhibits diverse biological functions and is crucial in safeguarding cells against oxidative harm and upholding a stable redox milieu. The metabolism of GSH is implicated in numerous diseases, particularly in the progression of malignant tumors. Consequently, therapeutic strategies targeting the regulation of GSH synthesis and metabolism to modulate GSH levels represent a promising avenue for future research. This study aimed to elucidate the intricate relationship between GSH metabolism and ferroptosis, highlighting how modulation of GSH metabolism can impact cellular susceptibility to ferroptosis and consequently influence the development of tumors and other diseases. The paper provides a comprehensive overview of the physiological functions of GSH, including its structural characteristics, physicochemical properties, sources, and metabolic pathways, as well as investigate the molecular mechanisms underlying GSH regulation of ferroptosis and potential therapeutic interventions. Unraveling the biological role of GSH holds promise for individuals afflicted with tumors.

4.
J Ethnopharmacol ; 331: 118277, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697407

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chemotherapy tolerance weakened efficacy of chemotherapy drugs in the treating gastric cancer (GC). Banxiaxiexin decoction (BXXXD) was widely used in digestive diseases for thousands of years in Traditional Chinese medicine (TCM). In order to better treat GC, three other herbs were added to BXXXD to create a new prescription named Modified Banxiaxiexin decoction (MBXXXD). Although MBXXXD potentially treated GC by improving chemotherapy tolerance, the possible mechanisms were still unknown. AIM OF THE STUDY: To explore the therapeutic effect of MBXXXD on GC patients and explore the possible anti-cancer mechanism. MATERIALS AND METHODS: A randomized controlled trial (n = 146) was conducted to evaluate the clinical efficacy between MBXXXD + chemotherapy (n = 73) and placebo + chemotherapy (n = 73) in GC patients by testing overall survival, progression free survival, clinical symptoms, quality of life score, tumor markers, T cell subpopulation, and adverse reactions. Network pharmacology was conducted to discover the potential mechanism of MBXXXD in treating GC. Metabolic activity assay, cell clone colony formation and mitochondrial apoptosis were detected in human GC cell lines including AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD. Multiple pathways including P53, AKT, IκB, P65, P38, ERK, JNK p-AKT, p-P65, p-P38, p-ERK and p-JNK in AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy were also detected. RESULTS: MBXXXD + chemotherapy promoted overall survival and progression free survival, improved clinical symptoms and quality of life score, increased T4 lymphocyte ratio and T8 lymphocyte ratio as well as T4/T8 lymphocyte ratio, and alleviated adverse reactions in GC patients. Network pharmacology predicted multiple targets and pathways of MBXXXD in treating GC including apoptosis, P53 pathway, AKT pathway, MAPK pathway. MBXXXD inhibited cell viability, decreased cell clone colony formation, and promoted mitochondrial apoptosis by producing reactive oxygen species (ROS), promoting mitochondrial permeability transition pore (MPTP) and the cleavage of pro-caspase-3 and pro-caspase-9, and decreasing mito-tracker red Chloromethyl-X-rosamine (CMXRos) in AGS cell, KNM-45 cell and SGC7901 cell. MBXXXD up-regulated the expression of P53 and IκB, and down-regulated the expression of p-AKT, p-P65, p-P38, p-ERK, p-JNK, AKT, P65, P38, ERK and JNK AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy. CONCLUSION: MBXXXD benefitted chemotherapy for GC by regulating multiple targets and pathways.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Pessoa de Meia-Idade , Masculino , Linhagem Celular Tumoral , Idoso , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Adulto , Farmacologia em Rede
5.
Cell Signal ; 120: 111239, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815642

RESUMO

The metabolic reconfiguration of tumor cells constitutes a pivotal aspect of tumor proliferation and advancement. This study delves into two primary facets of tumor metabolism: the Warburg effect and mitochondrial metabolism, elucidating their contributions to tumor dominance. The Warburg effect facilitates efficient energy acquisition by tumor cells through aerobic glycolysis and lactic acid fermentation, offering metabolic advantages conducive to growth and proliferation. Simultaneously, mitochondrial metabolism, serving as the linchpin of sustained tumor vitality, orchestrates the tricarboxylic acid cycle and electron transport chain, furnishing a steadfast and dependable wellspring of biosynthesis for tumor cells. Regarding targeted therapy, this discourse examines extant strategies targeting tumor glycolysis and mitochondrial metabolism, underscoring their potential efficacy in modulating tumor metabolism while envisaging future research trajectories and treatment paradigms in the realm of tumor metabolism. By means of a thorough exploration of tumor metabolism, this study aspires to furnish crucial insights into the regulation of tumor metabolic processes, thereby furnishing valuable guidance for the development of novel therapeutic modalities. This comprehensive deliberation is poised to catalyze advancements in tumor metabolism research and offer novel perspectives and pathways for the formulation of cancer treatment strategies in the times ahead.


Assuntos
Mitocôndrias , Neoplasias , Efeito Warburg em Oncologia , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Glicólise , Animais , Metabolismo Energético , Ciclo do Ácido Cítrico
6.
Cell Death Discov ; 10(1): 136, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480712

RESUMO

Ferroptosis is an iron ion-dependent, regulatory cell death modality driven by intracellular lipid peroxidation that plays a key role in the development of HCC. Studies have shown that various clinical agents (e.g., sorafenib) have ferroptosis inducer-like effects and can exert therapeutic effects by modulating different key factors in the ferroptosis pathway. This implies that targeting tumor cell ferroptosis may be a very promising strategy for tumor therapy. In this paper, we summarize the prerequisites and defense systems for the occurrence of ferroptosis and the regulatory targets of drug-mediated ferroptosis action in HCC, the differences and connections between ferroptosis and other programmed cell deaths. We aim to summarize the theoretical basis, classical inducers of ferroptosis and research progress of ferroptosis in HCC cells, clued to the treatment of HCC by regulating ferroptosis network. Further investigation of the specific mechanisms of ferroptosis and the development of hepatocellular carcinoma and interventions at different stages of hepatocellular carcinoma will help us to deepen our understanding of hepatocellular carcinoma, with a view to providing new and more precise preventive as well as therapeutic measures for patients.

7.
Front Endocrinol (Lausanne) ; 13: 1107071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743913

RESUMO

Objective: As a metabolic disease, one important feature of non-alcoholic fatty liver disease (NAFLD) is the disturbance of the intestinal flora. Spleen-strengthening and liver-draining formula (SLF) is a formula formed according to the theory of "One Qi Circulation" (Qing Dynasty, 1749) of Traditional Chinese Medicine (TCM), which has shown significant therapeutic effect in patients with NAFLD in a preliminary clinical observation. In this study, we aim to explore the mechanism of SLF against NAFLD, especially its effect on glucolipid metabolism, from the perspective of intestinal flora. Methods: A prospective, randomized, controlled clinical study was designed to observe the efficacy and safety of SLF in the treatment of NAFLD. The study participants were randomly and evenly divided into control group and treatment group (SLF group). The control group made lifestyle adjustments, while the SLF group was treated with SLF on top of the control group. Both groups were participated in the study for 12 consecutive weeks. Furthermore, the feces of the two groups were collected before and after treatment. The intestinal flora of each group and healthy control (HC) were detected utilizing 16S rRNA gene sequencing. Results: Compared with the control group, the SLF group showed significant improvements in liver function, controlled attenuation parameter (CAP), and liver stiffness measurement (LSM), meanwhile, patients had significantly lower lipid and homeostasis model assessment of insulin resistance (HOMA-IR) with better security. Intestinal flora 16S rRNA gene sequencing results indicated reduced flora diversity and altered species abundance in patients with NAFLD. At the phylum level, Desulfobacterota levels were reduced. Although Firmicutes and Bacteroidetes did not differ significantly between HC and NAFLD, when grouped by alanine transaminase (ALT) and aspartate transaminase (AST) levels in NAFLD, Firmicutes levels were significantly higher in patients with ALT or AST abnormalities, while Bacteroidetes was significantly lower. Clinical correlation analysis showed that Firmicutes positively correlated with gender, age, ALT, AST, LSM, and Fibroscan-AST (FAST) score, while the opposite was true for Bacteroidetes. At the genus level, the levels of Alistipes, Bilophila, Butyricimonas, Coprococcus, Lachnospiraceae_NK4A136 group Phascolarctobacterium, Ruminococcus, UCG-002, and UCG-003 were reduced, whereas abundance of Tyzzerella increased. There was no statistically significant difference in Firmicutes and Bacteroidota levels in the SLF group before and after treatment, but both bacteria tended to retrace. At the genus level, Coprococcus (Lachnospiraceae family), Lachnospiraceae_NK4A136 group (Lachnospiraceae family), and Ruminococcus (Ruminococcaceae family) were significantly higher in the SLF group after treatment, and there was also a tendency for Bilophila (Desulfovibrionaceae family) to be back-regulated toward HC. Conclusions: SLF can improve liver function and glucolipid metabolism in patients with NAFLD and lower down liver fat content to some extent. SLF could be carried out by regulating the disturbance of intestinal flora, especially Coprococcus, Lachnospiraceae_NK4A136 group, and Ruminococcus genus.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Clostridiales , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/microbiologia , RNA Ribossômico 16S , Baço/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA