Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chronobiol Int ; 41(2): 267-282, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38267234

RESUMO

In modern 24-hour society, various round-the-clock services have entailed shift work, resulting in non-24-hour schedules. However, the extent of behavioral and physiological alterations by non-24-hour schedules remains unclear, and particularly, effective interventions to restore the circadian functions of non-24-hour shift workers are rarely explored. In this study, we investigate the effects of a simulated non-24-hour military shift work schedule on daily rhythms and sleep, and establish an intervention measure to restore the circadian functions of non-24-hour shift workers. The three stages of experiments were conducted. The stage-one experiment was to establish a comprehensive evaluation index of the circadian rhythms and sleep for all 60 participants by analyzing wristwatch-recorded physiological parameters and sleep. The stage-two experiment evaluated the effects of an intervention strategy on physiological rhythms and sleep. The stage-three experiment was to examine the participants' physiological and behavioral disturbances under the simulated non-24-hour military shift work schedule and their improvements by the optimal lighting apparatus. We found that wristwatch-recorded physiological parameters display robust rhythmicity, and the phases of systolic blood pressures and heart rates can be used as reliable estimators for the human body time. The simulated non-24-hour military shift work schedule significantly disrupts the daily rhythms of oxygen saturation levels, blood pressures, heart rates, and reduces sleep quality. Administration of blue light in the morning and no blue-ray light in the evening improves the amplitude and synchronization of daily rhythms of the non-24-hour participants. These findings demonstrate the harmful consequences of the non-24-hour shift work schedule and provide a non-invasive strategy to improve the well-being and work efficiency of the non-24-hour shift population.


Assuntos
Ritmo Circadiano , Melatonina , Humanos , Ritmo Circadiano/fisiologia , Luz Azul , Luz , Sono/fisiologia , Tolerância ao Trabalho Programado/fisiologia
2.
Acta Pharm Sin B ; 13(10): 4149-4171, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799393

RESUMO

Bacteria-mediated anti-tumor therapy has received widespread attention due to its natural tumor-targeting ability and specific immune-activation characteristics. It has made significant progress in breaking the limitations of monotherapy and effectively eradicating tumors, especially when combined with traditional therapy, such as radiotherapy. According to their different biological characteristics, bacteria and their derivatives can not only improve the sensitivity of tumor radiotherapy but also protect normal tissues. Moreover, genetically engineered bacteria and bacteria-based biomaterials have further expanded the scope of their applications in radiotherapy. In this review, we have summarized relevant researches on the application of bacteria and its derivatives in radiotherapy in recent years, expounding that the bacteria, bacterial derivatives and bacteria-based biomaterials can not only directly enhance radiotherapy but also improve the anti-tumor effect by improving the tumor microenvironment (TME) and immune effects. Furthermore, some probiotics can also protect normal tissues and organs such as intestines from radiation via anti-inflammatory, anti-oxidation and apoptosis inhibition. In conclusion, the prospect of bacteria in radiotherapy will be very extensive, but its biological safety and mechanism need to be further evaluated and studied.

3.
ACS Nano ; 16(7): 11325-11337, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35819107

RESUMO

Biomaterial-based pleiotropic immune activation may effectively improve the response rate of immunotherapy and enhance the therapeutic effect of the tumor. Bacteria as a natural carrier have demonstrated great advantages in tumor targeted delivery and immune activation of the body. Herein, we construct an inactivated bacteria vector with 125I/131I labeling (125I-VNP/131I-VNP), which could retain radioiodine at the tumor site for a long time and deliver it into tumor cells and a tumor-associated macrophage (TAM), thus achieving efficient internal radioisotope therapy (IRT) of the primary tumor with good biosafety. More importantly, 131I-VNP-mediated local IRT could further stimulate robust systemic antitumor immune responses via activation of the cGAS-STING pathway of innate immunity and promotion of the maturation of DC cells for T-cell-dominated adaptive immunity. After combination with systemic checkpoint blockade therapy (αPD-L1), 131I-VNP, which induces the up-regulation of PD-L1 expression in the distant tumor, could lead to the inhibition of in situ colon cancer and protection against tumor rechallenge. Our strategy pioneers the use of an inactivated bacteria vector as a bridge to cleverly connect radiotherapy and immunotherapy and provide an enlightening idea for radio-immunotherapy mediated by pleiotropic immune activation functions of bacterial vectors.


Assuntos
Radioisótopos do Iodo , Neoplasias , Humanos , Radioisótopos do Iodo/uso terapêutico , Imunoterapia , Neoplasias/radioterapia , Imunidade Inata , Bactérias , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Nat Commun ; 7: 13798, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27958266

RESUMO

The abrupt motion of the photospheric flux during a solar flare is thought to be a back reaction caused by the coronal field reconfiguration. However, the type of motion pattern and the physical mechanism responsible for the back reaction has been uncertain. Here we show that the direction of a sunspot's rotation is reversed during an X1.6 flare using observations from the Helioseismic and Magnetic Imager. A magnetic field extrapolation model shows that the corresponding coronal magnetic field shrinks with increasing magnetic twist density. This suggests that the abrupt reversal of rotation in the sunspot may be driven by a Lorentz torque that is produced by the gradient of twist density from the solar corona to the solar interior. These results support the view that the abrupt reversal in the rotation of the sunspot is a dynamic process responding to shrinkage of the coronal magnetic field during the flare.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...