Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 124(Pt A): 110849, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633241

RESUMO

OBJECTIVE: Random skin flaps are often placed by plastic surgeons to treat limb deformities and dysfunction. Nesfatin-1 (NES) is a peptide that exerts angiogenic, anti-inflammatory, and anti-oxidant effects. We assessed the impact of NES on flap survival and the underlying mechanism. METHODS: We modified the McFarlane random skin flap rat model. Thirty-six male Sprague-Dawley rats were randomly divided into a control group (corn oil solution with DMSO), low-dose group (NES-L at 10 µg/kg/day), and high-dose group (NES-H at 20 µg/kg/day). On day 7 after surgery, average flap survival areas were calculated. Laser Doppler blood flow monitoring and lead oxide/gelatin angiography were used to evaluate blood perfusion and neovascularization, respectively. Flap histopathological status was evaluated by hematoxylin and eosin (H&E) staining. The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were determined. Immunohistochemical techniques were used to evaluate the expression of angiogenetic and inflammatory factors. RESULTS: In the experimental groups, the mean skin flap survival areas and blood perfusion increased considerably. The SOD activities in the experimental groups increased and the MDA contents decreased. Immunohistochemically, VEGF expression was upregulated in the experimental groups and the expression levels of inflammatory factors decreased markedly. CONCLUSION: NES inhibited ischemic skin flap necrosis, promoted angiogenesis, and reduced ischemia-reperfusion injury and inflammation. Inhibition of the inflammatory HMGB1-TLR4-NF-κB signal pathway, which reduced flap inflammation and oxidative stress, may explain the enhanced flap survival.

2.
Front Immunol ; 14: 1127610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441072

RESUMO

Objective: Random skin flaps have many applications in plastic and reconstructive surgeries. However, distal flap necrosis restricts wider clinical utility. Mitophagy, a vital form of autophagy for damaged mitochondria, is excessively activated in flap ischemia/reperfusion (I/R) injury, thus inducing cell death. Aldehyde dehydrogenase-2 (ALDH2), an allosteric tetrameric enzyme, plays an important role in regulating mitophagy. We explored whether ALDH2 activated by N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1) could reduce the risk of ischemic random skin flap necrosis, and the possible mechanism of action. Methods: Modified McFarlane flap models were established in 36 male Sprague-Dawley rats assigned randomly to three groups: a low-dose Alda-1 group (10 mg/kg/day), a high-dose Alda-1 group (20 mg/kg/day) and a control group. The percentage surviving skin flap area, neutrophil density and microvessel density (MVD) were evaluated on day 7. Oxidative stress was quantitated by measuring the superoxide dismutase (SOD) and malondialdehyde (MDA) levels. Blood perfusion and skin flap angiogenesis were assessed via laser Doppler flow imaging and lead oxide-gelatin angiography, respectively. The expression levels of inflammatory cytokines (IL-1ß, IL-6, and TNF-α), vascular endothelial growth factor (VEGF), ALDH2, PTEN-induced kinase 1 (PINK1), and E3 ubiquitin ligase (Parkin) were immunohistochemically detected. Indicators of mitophagy such as Beclin-1, p62, and microtubule-associated protein light chain 3 (LC3) were evaluated by immunofluorescence. Results: Alda-1 significantly enhanced the survival area of random skin flaps. The SOD activity increased and the MDA level decreased, suggesting that Alda-1 reduced oxidative stress. ALDH2 was upregulated, and mitophagy-related proteins (PINK1, Parkin, Beclin-1, p62, and LC3) were downregulated, indicating that ALDH2 inhibited mitophagy through the PINK1/Parkin signaling pathway. Treatment with Alda-1 reduced neutrophil infiltration and expressions of inflammatory cytokines. Alda-1 significantly upregulated VEGF expression, increased the MVD, promoted angiogenesis, and enhanced blood perfusion. Conclusion: ALDH2 activation can effectively enhance random skin flap viability via inhibiting PINK1/Parkin-dependent mitophagy. Moreover, enhancement of ALDH2 activity also exerts anti-inflammatory and angiogenic properties.


Assuntos
Traumatismo por Reperfusão , Fator A de Crescimento do Endotélio Vascular , Animais , Masculino , Ratos , Aldeído Desidrogenase/uso terapêutico , Proteína Beclina-1 , Citocinas/uso terapêutico , Isquemia , Necrose , Complicações Pós-Operatórias , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Superóxido Dismutase , Ubiquitina-Proteína Ligases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Colloids Surf B Biointerfaces ; 228: 113438, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37421763

RESUMO

Cancer, a disease notorious for its difficult therapy regimen, has long puzzled researchers. Despite attempts to cure cancer using surgery, chemotherapy, radiotherapy, and immunotherapy, their effectiveness is limited. Recently, photothermal therapy (PTT), a rising strategy, has gained attention. PTT can increase the surrounding temperature of cancer tissues and cause damage to them. Fe is widely used in PTT nanostructures due to its strong chelating ability, good biocompatibility, and the potential to induce ferroptosis. In recent years, many nanostructures incorporating Fe3+ have been developed. In this article, we summarize PTT nanostructures containing Fe and introduce their synthesis and therapy strategy. However, PTT nanostructures containing Fe are still in their infancy, and more effort must be devoted to improving their effectiveness so that they can eventually be used in clinics.


Assuntos
Hipertermia Induzida , Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Terapia Fototérmica , Nanoestruturas/química , Fototerapia , Neoplasias/tratamento farmacológico
4.
Int J Pharm ; 641: 123082, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37244464

RESUMO

Oxaliplatin (OXA) resistance remains the major obstacle to the successful chemotherapy of colorectal cancer (CRC). As a self-protection mechanism, autophagy may contribute to tumor drug resistance, therefore autophagy suppression could be regarded as a possible treatment option in chemotherapy. Cancer cells, especially drug-resistant tumor cells, increase their demand for specific amino acids by expanding exogenous supply and up-regulating de novo synthesis, to meet the needs for excessive proliferation. Therefore, it is possible to inhibit cancer cell proliferation through pharmacologically blocking the entry of amino acid into cancer cells. SLC6A14 (ATB0,+) is an essential amino acid transporter, that is often abnormally up-regulated in most cancer cells. Herein, in this study, we designed oxaliplatin/berbamine-coloaded, ATB0,+-targeted nanoparticles ((O + B)@Trp-NPs) to therapeutically target SLC6A14 (ATB0,+) and inhibit cancer proliferation. The (O + B)@Trp-NPs utilize the surface-modified tryptophan to achieve SLC6A14-targeted delivery of Berbamine (BBM), a compound that is found in a number of plants used in traditional Chinese medicine, which could suppress autolysosome formation though impairing autophagosome-lysosome fusion. We verified the feasibility of this strategy to overcome the OXA resistance during colorectal cancer treatment. The (O + B)@Trp-NPs significantly inhibited the proliferation and decreased the drug resistance of resistant colorectal cancer cells. In vivo, (O + B)@Trp-NPs greatly suppressed the tumor growth in tumor-bearing mice, which is consistent with the in vitro data. This research offers a unique and promising chemotherapeutic treatment for colorectal cancer.


Assuntos
Neoplasias Colorretais , Nanopartículas , Animais , Camundongos , Oxaliplatina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Autofagia , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral
5.
Int Immunopharmacol ; 120: 110364, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37224651

RESUMO

BACKGROUND: Flap necrosis is a common issue encountered in clinical flap transplantation surgery. Here, we assessed the effects of saxagliptin, a dipeptidyl peptidase-4 inhibitor, on flap survival and explored the underlying mechanisms. METHODS: A dorsal McFarlane flap model was established in 36 rats, which were randomly divided into a high-dose saxagliptin (HS) group (saxagliptin, 30 mg/kg/day, n = 12), low-dose saxagliptin (LS) group (saxagliptin, 10 mg/kg/day, n = 12), and control group (n = 12). On day 7, flap survival was examined by eye in six rats from each group, along with determination of blood perfusion by laser Doppler flowmetry and angiogenesis by angiography. The remaining rats were sacrificed for harvesting of flap tissue. The status of the flap tissue was examined histopathologically by staining with hematoxylin and eosin (H&E). Oxidative stress was evaluated by determination of superoxide dismutase (SOD) activity and malonaldehyde (MDA) content. Gasdermin D (GSDMD), vascular endothelial growth factor (VEGF), tumor necrosis factor-α (TNF-α), NOD-like receptor pyrin domain containing 3 (NLRP3), interleukin (IL)-6, IL-18, Toll-like receptor 4 (TLR4), IL-1ß, caspase-1, and nuclear factor-κB (NF-κB) expression were detected by immunohistochemical analysis. RESULTS: The experimental group exhibited a larger area of flap survival, with more blood perfusion and neovascularization and better histopathological status than the control group. The degree of oxidative stress and the levels of NF-κB, TLR4, proinflammatory cytokines, and pyroptosis-associated protein were decreased in the experimental group, while the VEGF level was increased in a saxagliptin dose-dependent manner. CONCLUSION: Saxagliptin promotes random skin flap survival.


Assuntos
Receptor 4 Toll-Like , Fator A de Crescimento do Endotélio Vascular , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ratos Sprague-Dawley , NF-kappa B , Interleucina-6 , Proteína 3 que Contém Domínio de Pirina da Família NLR
6.
Int Wound J ; 20(9): 3586-3598, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37225176

RESUMO

Random skin flaps have limited clinical application as a broad surgical reconstruction treatment because of distal necrosis. The prolyl hydroxylase domain-containing protein inhibitor roxadustat (RXD) enhances angiogenesis and reduces oxidative stress and inflammation. This study explored the function of RXD in the survival of random skin flaps. Thirty-six male Sprague-Dawley rats were randomly divided into low-dose RXD group (L-RXD group, 10 mg/kg/2 day), high-dose RXD group (H-RXD group, 25 mg/kg/2 day), and control group (1 mL of solvent, 1:9 DMSO:corn oil). The proportion of surviving flaps was determined on day 7 after surgery. Angiogenesis was assessed by lead oxide/gelatin angiography, and microcirculation blood perfusion was evaluated by laser Doppler flow imaging. Specimens in zone II were obtained, and the contents of superoxide dismutase (SOD) and malondialdehyde (MDA) were measured as indicators of oxidative stress. Histopathological status was evaluated with haematoxylin and eosin staining. The levels of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and the inflammatory factors interleukin (IL)-1ß, IL-6, and tumour necrosis factor-α (TNF-α) were detected by immunohistochemistry. RXD promoted flap survival and microcirculatory blood perfusion. Angiogenesis was detected distinctly in the experimental group. SOD activity increased and the MDA level decreased in the experimental group. Immunohistochemistry indicated that the expression levels of HIF-1α and VEGF were increased while the levels of IL-6, IL-1ß, and TNF-α were decreased after RXD injection. RXD promoted random flap survival by reinforcing vascular hyperplasia and decreasing inflammation and ischaemia-reperfusion injury.


Assuntos
Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio Vascular , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo , Interleucina-6 , Subunidade alfa do Fator 1 Induzível por Hipóxia , Microcirculação , Superóxido Dismutase/metabolismo , Inflamação
7.
Eur J Pharm Biopharm ; 187: 130-140, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37105362

RESUMO

Islet transplantation refers to the transfusion of healthy islet cells into the diabetic recipients and reconstruction of their endogenous insulin secretion to achieve insulin independence. It is a minimally invasive surgery that holds renewed prospect as a therapeutic method for type 1 diabetes mellitus. However, poor oxygenation in the early post-transplantation period is considered as one of the major causes of islet loss and dysfunction. Due to the metabolism chacteristics, islets required a high supply of oxygen for cell survival while a hypoxia environment would lead to severe islet loss and graft failure. Emerging strategies have been proposed, including providing external oxygen and speeding up revascularization. From the perspective of formulation science, it is feasible and practical to protect transplanted islets by oxygen-release before revascularization as opposed to local hypoxia. In this study, we review the potential formulation strategies that could provide oxygen-release by either delivering external oxygen or triggering localized oxygen generation for transplanted islets.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Oxigênio , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Insulina/metabolismo , Hipóxia/metabolismo
8.
Toxicol In Vitro ; 88: 105553, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36634885

RESUMO

As kinds of porous crystalline compounds, zeolitic imidazolate frameworks (ZIFs) have been developed quickly and attracted considerable attention for use in nano drug delivery systems, which raised concerns about cardiovascular disorders. At the present, the cytotoxic mechanism of ZIFs in cardiovascular disorders was still unclear. Our experiment explored the toxicity of ZIF-8, a typical kind of ZIFs, on human EA.hy926 vascular endothelial cells. The cell viability, ROS formation, apoptosis level, inflammatory response level, wound healing ability and atherosclerosis-related indicators of EA.hy926 endothelial cells were analyzed after ZIF-8 treatment. Meanwhile, we evaluated the ability of antioxidant N-Acetyl-L-cysteine (NAC) to attenuate the toxicity of ZIF-8 on EA.hy926 endothelial cells. As results, NAC attenuated ROS formation, cell apoptosis, LDH formation and endothelial dysfunction caused by ZIF-8. As the Wnt/ß-catenin pathway was involved in endothelial cell dysfunction, we also studied the expression level of ß-catenin and LEF1 in ZIF-8 and/or NAC treated EA.hy926 cells. As expected, ZIF-8 increased the protein expressions of ß-catenin and LEF1in the IC50 group, which was significantly inhibited by co-treatment with NAC. Taken together, this study could help improve our understanding about the mechanism of ZIF-8-induced endothelial cells injury and NAC had therapeutic potential in preventing ZIF-8-associated endothelial dysfunction by wnt/ß-catenin pathway.


Assuntos
Acetilcisteína , Células Endoteliais , beta Catenina , Humanos , Acetilcisteína/farmacologia , beta Catenina/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Via de Sinalização Wnt
9.
Phytother Res ; 37(2): 424-437, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36116786

RESUMO

Random skin flaps are often used in reconstruction operations. However, flap necrosis is still a common postoperative complication. Here, we investigated whether berberine (C20 H19 NO5 , BBR), a drug with antioxidant activity, improves the survival rate of random flaps. Fifty-four rats were divided into three groups: control, BBR and BBR + L -NAME groups (L -NAME, L -NG -Nitro-arginine methyl ester). The survival condition and the percentage of survival area of the flaps were evaluated on the seventh day after surgery. After animals were sacrificed, angiogenesis, apoptosis, oxidative stress and inflammation levels were assessed by histological and protein analyses. Our findings suggest that berberine promotes flap survival. The level of angiogenesis increased; the levels of oxidative stress, inflammation and apoptosis decreased; the levels of phosphoinositide 3-kinase (PI3K), phospho-Akt (p-Akt) and phospho-endothelial nitric oxide synthase (p-eNOS) increased in the flap tissue; and L -NAME reversed the effects of berberine on random skin flaps. Statistical analysis showed that the BBR group results differed significantly from those of the control and the BBR + L -NAME groups (p < .05). Our results confirm that berberine is an effective drug for significantly improving the survival rate of random skin flaps by promoting angiogenesis, inhibiting inflammation, attenuating oxidative stress, and reducing apoptosis through the PI3K/Akt/eNOS signaling pathway.


Assuntos
Berberina , Fosfatidilinositol 3-Quinases , Ratos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Berberina/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais , NG-Nitroarginina Metil Éster/farmacologia
10.
Open Life Sci ; 17(1): 1094-1103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160632

RESUMO

Irrigation regimes should be chosen to maximize crop yield and water use efficiency. To realize high yield and efficient water use with the appropriate furrow irrigation regime, the effects of two regimes (alternate furrow irrigation and conventional furrow irrigation) and three lower soil moisture limits (60, 70, and 80%) were studied on winter wheat yield and water consumption using a multi-level fuzzy comprehensive evaluation method. The results show that under the two regimes, alternate furrow irrigation and conventional furrow irrigation, when the lower limit of the soil moisture is 70%, the harvest index (0.45 and 0.39, respectively) and crop water productivity of winter wheat (1.86 and 1.90 kg m-3, respectively) are highest. The comprehensive fuzzy evaluation model considers multiple measures, including yield, harvest indices, irrigation volume, total water consumption, and crop water productivity - the index values are highest at the 70% condition, which are 0.3468 and 0.3432, respectively. Therefore, it can be concluded that a moderate water deficit is conducive to saving water resources and improving water use efficiency. In conclusion, a multi-level and multi-factor indices system of furrow irrigation regime was constructed based on ensuring winter wheat production. Conventional furrow irrigation is recommended in areas with sufficient irrigation water, while alternating furrow irrigation, which can reduce the total amount of irrigation required, is suitable for areas with water shortages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA