Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(1): 236-248, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38230281

RESUMO

Optogenetics is a novel biotechnology widely used to precisely manipulate a specific peripheral sensory neuron or neural circuit. However, the use of optogenetics to assess the therapeutic efficacy of analgesics is elusive. In this study, we generated a transgenic mouse stain in which all primary somatosensory neurons can be optogenetically activated to mimic neuronal hyperactivation in the neuropathic pain state for the assessment of analgesic effects of drugs. A transgenic mouse was generated using the advillin-Cre line mated with the Ai32 strain, in which channelrhodopsin-2 fused to enhanced yellow fluorescence protein (ChR2-EYFP) was conditionally expressed in all types of primary somatosensory neurons (advillincre/ChR2+/+). Immunofluorescence and transdermal photostimulation on the hindpaws were used to verify the transgenic mice. Optical stimulation to evoke pain-like paw withdrawal latency was used to assess the analgesic effects of a series of drugs. Injury- and pain-related molecular biomarkers were investigated with immunohistofluorescence. We found that the expression of ChR2-EYFP was observed in many primary afferents of paw skin and sciatic nerves and in primary sensory neurons and laminae I and II of the spinal dorsal horns in advillincre/ChR2+/+ mice. Transdermal blue light stimulation of the transgenic mouse hindpaw evoked nocifensive paw withdrawal behavior. Treatment with gabapentin, some channel blockers, and local anesthetics, but not opioids or COX-1/2 inhibitors, prolonged the paw withdrawal latency in the transgenic mice. The analgesic effect of gabapentin was also verified by the decreased expression of injury- and pain-related molecular biomarkers. These optogenetic mice provide a promising model for assessing the therapeutic efficacy of analgesics in neuropathic pain.

2.
Plant Physiol ; 194(4): 2069-2085, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37874747

RESUMO

Organ size shapes plant architecture during rice (Oryza sativa) growth and development, affecting key factors influencing yield, such as plant height, leaf size, and seed size. Here, we report that the rice Enhancer of Zeste [E(z)] homolog SET DOMAIN GROUP 711 (OsSDG711) regulates organ size in rice. Knockout of OsSDG711 produced shorter plants with smaller leaves, thinner stems, and smaller grains. We demonstrate that OsSDG711 affects organ size by reducing cell length and width and increasing cell number in leaves, stems, and grains. The result of chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) using an antitrimethylation of histone H3 lysine 27 (H3K27me3) antibody showed that the levels of H3K27me3 associated with cytokinin oxidase/dehydrogenase genes (OsCKXs) were lower in the OsSDG711 knockout line Ossdg711. ChIP-qPCR assays indicated that OsSDG711 regulates the expression of OsCKX genes through H3K27me3 histone modification. Importantly, we show that OsSDG711 directly binds to the promoters of these OsCKX genes. Furthermore, we measured significantly lower cytokinin contents in Ossdg711 plants than in wild-type plants. Overall, our results reveal an epigenetic mechanism based on OsSDG711-mediated modulation of H3K27me3 levels to regulate the expression of genes involved in the cytokinin metabolism pathway and control organ development in rice. OsSDG711 may be an untapped epigenetic resource for ideal plant type improvement.


Assuntos
Histonas , Oryza , Histonas/genética , Histonas/metabolismo , Oryza/metabolismo , Tamanho do Órgão/genética , Domínios PR-SET , Metilação , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
J. physiol. biochem ; 79(2): 313-325, may. 2023.
Artigo em Inglês | IBECS | ID: ibc-222544

RESUMO

Signaling by the transforming growth factor (TGF)-β superfamily is necessary for proper neural development and is involved in pain processing under both physiological and pathological conditions. Sensory neurons that reside in the dorsal root ganglia (DRGs) initially begin to perceive noxious signaling from their innervating peripheral target tissues and further convey pain signaling to the central nervous system. However, the transcriptional profile of the TGF-β superfamily members in DRGs during chronic inflammatory pain remains elusive. We developed a custom microarray to screen for transcriptional changes in members of the TGF-β superfamily in lumbar DRGs of rats with chronic inflammatory pain and found that the transcription of the TGF-β superfamily members tends to be downregulated. Among them, signaling of the activin/inhibin and bone morphogenetic protein/growth and differentiation factor (BMP/GDF) families dramatically decreased. In addition, peripherally pre-local administration of activins A and C worsened formalin-induced acute inflammatory pain, whereas activin C, but not activin A, improved formalin-induced persistent inflammatory pain by inhibiting the activation of astrocytes. This is the first report of the TGF-β superfamily transcriptional profiles in lumbar DRGs under chronic inflammatory pain conditions, in which transcriptional changes in cytokines or pathway components were found to contribute to, or be involved in, inflammatory pain processing. Our data will provide more targets for pain research. (AU)


Assuntos
Animais , Ratos , Gânglios Espinais , Fator de Crescimento Transformador beta , Proteínas Morfogenéticas Ósseas/fisiologia , Grupos Diagnósticos Relacionados , Peptídeos e Proteínas de Sinalização Intercelular , Dor
4.
J Physiol Biochem ; 79(2): 313-325, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36696051

RESUMO

Signaling by the transforming growth factor (TGF)-ß superfamily is necessary for proper neural development and is involved in pain processing under both physiological and pathological conditions. Sensory neurons that reside in the dorsal root ganglia (DRGs) initially begin to perceive noxious signaling from their innervating peripheral target tissues and further convey pain signaling to the central nervous system. However, the transcriptional profile of the TGF-ß superfamily members in DRGs during chronic inflammatory pain remains elusive. We developed a custom microarray to screen for transcriptional changes in members of the TGF-ß superfamily in lumbar DRGs of rats with chronic inflammatory pain and found that the transcription of the TGF-ß superfamily members tends to be downregulated. Among them, signaling of the activin/inhibin and bone morphogenetic protein/growth and differentiation factor (BMP/GDF) families dramatically decreased. In addition, peripherally pre-local administration of activins A and C worsened formalin-induced acute inflammatory pain, whereas activin C, but not activin A, improved formalin-induced persistent inflammatory pain by inhibiting the activation of astrocytes. This is the first report of the TGF-ß superfamily transcriptional profiles in lumbar DRGs under chronic inflammatory pain conditions, in which transcriptional changes in cytokines or pathway components were found to contribute to, or be involved in, inflammatory pain processing. Our data will provide more targets for pain research.


Assuntos
Gânglios Espinais , Fator de Crescimento Transformador beta , Ratos , Animais , Fator de Crescimento Transformador beta/metabolismo , Proteínas Morfogenéticas Ósseas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Dor , Grupos Diagnósticos Relacionados
5.
Artigo em Inglês | MEDLINE | ID: mdl-36201267

RESUMO

BACKGROUND: Neuroinflammation and cytokines play critical roles in neuropathic pain and axon degeneration/regeneration. Cytokines of transforming growth factor-ß superfamily have implications in pain and injured nerve repair processing. However, the transcriptional profiles of the transforming growth factor-ß superfamily members in dorsal root ganglia under neuropathic pain and axon degeneration/regeneration conditions remain elusive. OBJECTIVE: We aimed to plot the transcriptional profiles of transforming growth factor-ß superfamily components in lumbar dorsal root ganglia of sciatic nerve-axotomized rats and to further verify the profiles by testing the analgesic effect of activin C, a representative cytokine, on neuropathic pain. METHODS: Adult male rats were axotomized in sciatic nerves, and lumbar dorsal root ganglia were isolated for total RNA extraction or section. A custom microarray was developed and employed to plot the gene expression profiles of transforming growth factor-ß superfamily components. Realtime RT-PCR was used to confirm changes in the expression of activin/inhibin family genes, and then in situ hybridization was performed to determine the cellular locations of inhibin α, activin ßC, BMP-5 and GDF-9 mRNAs. The rat spared nerve injury model was performed, and a pain test was employed to determine the effect of activin C on neuropathic pain. RESULTS: The expression of transforming growth factor-ß superfamily cytokines and their signaling, including some receptors and signaling adaptors, were robustly upregulated. Activin ßC subunit mRNAs were expressed in the small-diameter dorsal root ganglion neurons and upregulated after axotomy. Single intrathecal injection of activin C inhibited neuropathic pain in spared nerve injury model. CONCLUSION: This is the first report to investigate the transcriptional profiles of members of transforming growth factor-ß superfamily in axotomized dorsal root ganglia. The distinct cytokine profiles observed here might provide clues toward further study of the role of transforming growth factor-ß superfamily in the pathogenesis of neuropathic pain and axon degeneration/regeneration after peripheral nerve injury.


Assuntos
Neuralgia , Fator de Crescimento Transformador beta , Ratos , Masculino , Animais , Axotomia , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/farmacologia , Ativinas/genética , Ativinas/farmacologia , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Neuralgia/genética , Neuralgia/patologia , RNA Mensageiro/genética , Inibinas/farmacologia , Fatores de Crescimento Transformadores/farmacologia
6.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457027

RESUMO

Plant fatty acyl-acyl carrier protein (ACP) thioesterases terminate the process of de novo fatty acid biosynthesis in plastids by hydrolyzing the acyl-ACP intermediates, and determine the chain length and levels of free fatty acids. They are of interest due to their roles in fatty acid synthesis and their potential to modify plant seed oils through biotechnology. Fatty acyl-ACP thioesterases (FAT) are divided into two families, i.e., FATA and FATB, according to their amino acid sequence and substrate specificity. The high oil content in Jatropha curcas L. seed has attracted global attention due to its potential for the production of biodiesel. However, the detailed effects of JcFATA and JcFATB on fatty acid biosynthesis and plant growth and development are still unclear. In this study, we found that JcFATB transcripts were detected in all tissues and organs examined, with especially high accumulation in the roots, leaves, flowers, and some stages of developing seeds, and JcFATA showed a very similar expression pattern. Subcellular localization of the JcFATA-GFP and JcFATB-GFP fusion protein in Arabidopsis leaf protoplasts showed that both JcFATA and JcFATB localized in chloroplasts. Heterologous expression of JcFATA and JcFATB in Arabidopsis thaliana individually generated transgenic plants with longer roots, stems and siliques, larger rosette leaves, and bigger seeds compared with those of the wild type, indicating the overall promotion effects of JcFATA and JcFATB on plant growth and development while JcFATB had a larger impact. Compositional analysis of seed oil revealed that all fatty acids except 22:0 were significantly increased in the mature seeds of JcFATA-transgenic Arabidopsis lines, especially unsaturated fatty acids, such as the predominant fatty acids of seed oil, 18:1, 18:2, and 18:3. In the mature seeds of the JcFATB-transgenic Arabidopsis lines, most fatty acids were increased compared with those in wild type too, especially saturated fatty acids, such as 16:0, 18:0, 20:0, and 22:0. Our results demonstrated the promotion effect of JcFATA and JcFATB on plant growth and development, and their possible utilization to modify the seed oil composition and content in higher plants.


Assuntos
Arabidopsis , Jatropha , Proteína de Transporte de Acila/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Jatropha/genética , Jatropha/metabolismo , Palmitoil-CoA Hidrolase/análise , Palmitoil-CoA Hidrolase/metabolismo , Desenvolvimento Vegetal , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Tioléster Hidrolases/genética
7.
Neuroreport ; 32(5): 378-385, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33661805

RESUMO

The myeloid differentiation factor 88 (MyD88) adaptor mediates signaling by Toll-like receptors and some interleukins (ILs) in neural and non-neuronal cells. Recently, MyD88 protein was found to express in primary sensory neurons and be involved in the maintenance of persistent pain induced by complete Freund's adjuvant, chronic constriction injury and chemotherapy treatment in rodents. However, whether MyD88 in nociceptive neurons contributes to persistent pain induced by intraplantar injection of formalin remains elusive. Here, using conditional knockout (CKO) mice, we found that selective deletion of Myd88 in Nav1.8-expressing primary nociceptive neurons led to reduced pain response in the recovery phase of 1% formalin-induced mechanical pain and impaired the persistent thermal pain. Moreover, CKO mice exhibited reduced phase II pain response in 1%, but not 5%, formalin-induced acute inflammatory pain. Finally, nociceptor MyD88 deletion resulted in less neuronal c-Fos activation in spinal dorsal horns following 1% formalin stimulation. These data suggest that MyD88 in nociceptive neurons is not only involved in persistent mechanical pain but also promotes the transition from acute inflammatory pain to persistent thermal hyperalgesia induced by low-dose formalin stimulation.


Assuntos
Dor Aguda/metabolismo , Dor Crônica/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Nociceptores/metabolismo , Dor Aguda/induzido quimicamente , Animais , Dor Crônica/induzido quimicamente , Formaldeído/toxicidade , Camundongos , Camundongos Knockout
8.
Br J Pharmacol ; 177(24): 5642-5657, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33095918

RESUMO

BACKGROUND AND PURPOSE: The cytokine activin C is mainly expressed in small-diameter dorsal root ganglion (DRG) neurons and suppresses inflammatory pain. However, the effects of activin C in neuropathic pain remain elusive. EXPERIMENTAL APPROACH: Male rats and wild-type and TRPV1 knockout mice with peripheral nerve injury - sciatic nerve axotomy and spinal nerve ligation in rats; chronic constriction injury (CCI) in mice - provided models of chronic neuropathic pain. Ipsilateral lumbar (L)4-5 DRGs were assayed for activin C expression. Chronic neuropathic pain animals were treated with intrathecal or locally pre-administered activin C or the vehicle. Nociceptive behaviours and pain-related markers in L4-5 DRGs and spinal cord were evaluated. TRPV1 channel modulation by activin C was measured. KEY RESULTS: Following peripheral nerve injury, expression of activin ßC subunit mRNA and activin C protein was markedly up-regulated in L4-5 DRGs of animals with axotomy, SNL or CCI. [Correction added on 26 November 2020, after first online publication: The preceding sentence has been corrected in this current version.] Intrathecal activin C dose-dependently inhibited neuropathic pain in spinal nerve ligated rats. Local pre-administration of activin C decreased neuropathic pain, macrophage infiltration into ipsilateral L4-5 DRGs and microglial reaction in L4-5 spinal cords of mice with CCI. In rat DRG neurons, activin C enhanced capsaicin-induced TRPV1 currents. Pre-treatment with activin C reduced capsaicin-evoked acute hyperalgesia and normalized capsaicin-evoked persistent hypothermia in mice. Finally, the analgesic effect of activin C was abolished in TRPV1 knockout mice with CCI. CONCLUSION AND IMPLICATIONS: Activin C inhibits neuropathic pain by modulating TRPV1 channels, revealing potential analgesic applications in chronic neuropathic pain therapy.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Ativinas , Animais , Citocinas , Gânglios Espinais , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Neuralgia/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Roedores , Canais de Cátion TRPV/genética
9.
Front Genet ; 10: 202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30923536

RESUMO

Periodontitis is the most prevalent inflammatory disease of the periodontium, and is related to oral and systemic health. Exosomes are emerging as non-invasive biomarker for liquid biopsy. We here evaluated the levels of programmed death-ligand 1 (PD-L1) mRNA in salivary exosomes from patients with periodontitis and non-periodontitis controls. The purposes of this study were to establish a procedure for isolation and detection of mRNA in exosomes from saliva of periodontitis patients, to characterize the level of salivary exosomal PD-L1, and to illustrate its clinical relevance. Bioinformatics analysis suggested that periodontitis was associated with an inflammation gene expression signature, that PD-L1 expression positively correlated with inflammation in periodontitis based on gene set enrichment analysis (GSEA) and that PD-L1 expression was remarkably elevated in periodontitis patients versus control subjects. Exosomal RNAs were successfully isolated from saliva of 61 patients and 30 controls and were subjected to qRT-PCR. Levels of PD-L1 mRNA in salivary exosomes were higher in periodontitis patients than controls (P < 0.01). Salivary exosomal PD-L1 mRNA showed significant difference between the stages of periodontitis. In summary, the protocols for isolating and detecting exosomal RNA from saliva of periodontitis patients were, for the first time, characterized. The current study suggests that assay of exosomes-based PD-L1 mRNA in saliva has potential to distinguish periodontitis from the healthy, and the levels correlate with the severity/stage of periodontitis.

10.
Cancer Med ; 7(10): 5205-5216, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30270520

RESUMO

Nuclear receptor coactivator 1 (NCOA1) plays crucial roles in the regulation of gene expression mediated by a wide spectrum of steroid receptors such as androgen receptor (AR), estrogen receptor α (ER α), and estrogen receptor ß (ER ß). Therefore, dysregulations of NCOA1 have been found in a variety of cancer types. However, the clinical relevance and the functional roles of NCOA1 in human esophageal squamous cell carcinoma (ESCC) are less known. We found in this study that elevated levels of NCOA1 protein and/or mRNA as well as amplification of the NCOA1 gene occur in human ESCC. Elevated levels of NCOA1 due to these dysregulations were not only associated with more aggressive clinic-pathologic parameters but also poorer survival. Results from multiple cohorts of ESCC patients strongly suggest that the levels of NCOA1 could serve as an independent predictor of overall survival. In addition, silencing NCOA1 in ESCC cells remarkably decreased proliferation, migration, and invasion. These findings not only indicate that NCOA1 plays important roles in human ESCC but the levels of NCOA1 also could serve as a potential prognostic biomarker of ESCC and targeting NCOA1 could be an efficacious strategy in ESCC treatment.


Assuntos
Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Amplificação de Genes , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Prognóstico , Análise de Sobrevida , Carga Tumoral , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...