Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759745

RESUMO

The semaphorins represent a large family of signaling molecules with crucial roles in neuronal and cardiac development. While normal semaphorin function pertains largely to development, their involvement in malignancy is becoming increasingly evident. One member, Semaphorin 3C (SEMA3C), has been shown to drive a number of oncogenic programs, correlate inversely with cancer prognosis, and promote the progression of multiple different cancer types. This report surveys the body of knowledge surrounding SEMA3C as a therapeutic target in cancer. In particular, we summarize SEMA3C's role as an autocrine andromedin in prostate cancer growth and survival and provide an overview of other cancer types that SEMA3C has been implicated in including pancreas, brain, breast, and stomach. We also propose molecular strategies that could potentially be deployed against SEMA3C as anticancer agents such as biologics, small molecules, monoclonal antibodies and antisense oligonucleotides. Finally, we discuss important considerations for the inhibition of SEMA3C as a cancer therapeutic agent.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Próstata/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Semaforinas/farmacologia , Semaforinas/uso terapêutico , Animais , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino
2.
J Endocr Soc ; 2(12): 1381-1394, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30534631

RESUMO

Despite the amenability of early-stage prostate cancer to surgery and radiation therapy, locally advanced and metastatic prostate cancer is clinically problematic. Chemical castration is often used as a first-line therapy for advanced disease, but progression to the castration-resistant prostate cancer phase occurs with dependable frequency, largely through mutations to the androgen receptor (AR), aberrant AR signaling, and AR-independent mechanisms, among other causes. Semaphorin 3C (SEMA3C) is a secreted signaling protein that is essential for cardiac and neuronal development and has been shown to be regulated by the AR, to drive epithelial-to-mesenchymal transition and stem features in prostate cells, to activate receptor tyrosine kinases, and to promote cancer progression. Given that SEMA3C is linked to several key aspects of prostate cancer progression, we set out to explore SEMA3C inhibition by small molecules as a prospective cancer therapy. A homology-based SEMA3C protein structure was created, and its interaction with the neuropilin (NRP)-1 receptor was modeled to guide the development of the corresponding disrupting compounds. Experimental screening of 146 in silico‒identified molecules from the National Cancer Institute library led to the discovery of four promising candidates that effectively bind to SEMA3C, inhibit its association with NRP1, and attenuate prostate cancer growth. These findings provide proof of concept for the feasibility of inhibiting SEMA3C with small molecules as a therapeutic approach for prostate cancer.

3.
Sci Rep ; 7(1): 11501, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28904399

RESUMO

Prostate cancer (PCa) is among the most commonly-occurring cancers worldwide and a leader in cancer-related deaths. Local non-invasive PCa is highly treatable but limited treatment options exist for those with locally-advanced and metastatic forms of the disease underscoring the need to identify mechanisms mediating PCa progression. The semaphorins are a large grouping of membrane-associated or secreted signalling proteins whose normal roles reside in embryogenesis and neuronal development. In this context, semaphorins help establish chemotactic gradients and direct cell movement. Various semaphorin family members have been found to be up- and down-regulated in a number of cancers. One family member, Semaphorin 3 C (SEMA3C), has been implicated in prostate, breast, ovarian, gastric, lung, and pancreatic cancer as well as glioblastoma. Given SEMA3C's roles in development and its augmented expression in PCa, we hypothesized that SEMA3C promotes epithelial-to-mesenchymal transition (EMT) and stem-like phenotypes in prostate cells. In the present study we show that ectopic expression of SEMA3C in RWPE-1 promotes the upregulation of EMT and stem markers, heightened sphere-formation, and cell plasticity. In addition, we show that SEMA3C promotes migration and invasion in vitro and cell dissemination in vivo.


Assuntos
Transição Epitelial-Mesenquimal/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Semaforinas/genética , Animais , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Expressão Gênica , Xenoenxertos , Humanos , Imunofenotipagem , Masculino , Camundongos , Invasividade Neoplásica , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...