Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 33(37)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35653927

RESUMO

Design of the structure, composition and interface of the catalysts is very important to improve oxygen reduction reaction (ORR) catalytic activity under alkaline environment. Herein, we propose a direct method to rapid synthesis of tannic acid (TA) modified PdAu alloy nanowires (PdAu@TA NWs). Compared with pure PdAu NWs and commercial Pt/C, the PdAu@TA NWs exhibit superior ORR electrocatalytic activity (mass activity: 0.73 A mg-1metaland specific activity: 3.50 mA cm-2), stability, and methanol tolerance in an alkaline medium because PdAu@TA NWs possess sufficient active sites and synergistic effect that can effectively promote the oxygen reduction, inhibit the oxidation of the catalyst and improve the methanol tolerance of the catalyst. This synthetic method is a promising strategy to prepare metallic catalyst with surface functionalization.

2.
Chemistry ; 27(58): 14472-14477, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34328663

RESUMO

The optimization of structure and composition is essential to improve the performance of catalysts. Herein, mesoporous nanoparticles assembled PdNi/Ni nanotubes (mPdNi/Ni NTs) are successfully fabricated using nickel nanowires as sacrificial template. The combination of nanotubular structure with mesoporous nanoparticle morphology can provide facilitated transfer channels and sufficient active sites, allowing the full contact and reaction between catalysts and reactants. Therefore, the synthesized mPdNi/Ni NTs exhibite superior ethanol oxidation performance to mesoporous Pd nanotubes and commercial Pd black. This study proposes a rational strategy for the development of nanoparticle assembled nanotubes with surface mesoporous morphology, which can greatly improve catalytic performance in various electrocatalytic fields.

3.
ACS Appl Mater Interfaces ; 13(26): 30479-30485, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34160205

RESUMO

Electrochemical water splitting is one hopeful strategy for hydrogen production, and designing efficient hydrogen evolution electrocatalysts under universal pH is one of the most critical topics. Here, we have successfully prepared mesoporous bimetallic core-shell nanostructures with Au nanowires (Au NWs) as cores and mesoporous Rh as shells (Au@mRh NWs). Due to the one-dimensional structure and mesoporous core-shell structure, Au@mRh NWs possess more active sites and provide the synergistic effect, leading to the great improvement of the electrochemical activity toward the hydrogen evolution reaction under a wide range of pH. The present work proposes a versatile strategy for preparing a bimetallic core-shell structure with a mesoporous shell, which is highly promising for more electrocatalytic applications.

4.
ACS Appl Mater Interfaces ; 13(17): 20233-20239, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33884861

RESUMO

Designing one-dimensional (1D) bimetallic nanomaterials is of great significance for electrochemical nitrogen fixation. Inspired by this, 1D AuPd nanospikes (AuPd NSs) composed with internal Au nanowire and external Pd nanohumps were fabricated by a flexible low-temperature wet-chemical method. Benefiting from the excellent electron transport efficiency of the 1D material and the accessible surface area provided by the unique nanospike-like structure, AuPd NSs exhibit outstanding nitrogen reduction reaction performance with an NH3 yield rate of 16.9 µg h-1 mg-1cat. and a Faradaic efficiency of 15.9% at -0.3 V under 0.1 M Na2SO4. This work not only provides an effective electrocatalyst for nitrogen fixation technology, but also presents a flexible method for the controlled synthesis of spike-like nanomaterials.

5.
Nanoscale ; 13(5): 3208-3213, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33528487

RESUMO

The design of bimetallic core-shell nanostructures with mesoporous surfaces is considered significant to strengthen the catalytic activity and stability for direct methanol fuel cells. Here, we report a flexible method to synthesize Au@Pd core-shell mesoporous nanoflowers (Au@mPd NFs) with Au core coated with mesoporous Pd nano-petals, in which polymeric micelle-assembled structures are used as templates to induce the formation of mesopores. Benefiting from the electronic and structural effects, Au@mPd NFs show excellent electrocatalytic activity and stability for methanol oxidation reaction in alkaline electrolytes. This study demonstrates a versatile strategy for the fabrication of core-shell mesoporous nanoflowers with adjustable composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...