Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1365449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571707

RESUMO

The vascular veins in photosynthetic leaves play an important role in transporting water and sugars throughout the plant body, and their venation pattern and vein density determine the hydraulic efficiency of the leaf. Likewise, stomatal density (SD) can influence photosynthetic gas exchange. However, the correlation between leaf vein density and SD is seldom reported. Herein, we examined 16 leaves from the hybrid Photinia × fraseri and 16 leaves from one of its parents, P. serratifolia, to explore the correlation between leaf vein density and SD. For each leaf, equidistant lamina quadrats were excised along two longitudinal transects (one along the midrib and another along the leaf margin). For each quadrat, micrographs of 1.2 mm × 0.9 mm stomatal imprints, and 2.51 mm × 1.88 mm micrographs of leaf veins were used to measure total vein area per leaf unit area (VAA) and total vein length per unit area (VLA), as indicators of leaf vein density, to determine the correlation between SD and leaf vein density. For each taxon, there was no significant correlation between SD and VAA, but there was a significant correlation between SD and VLA. The data indicate that SD is not positively correlated with VAA but positively correlated with VLA for both the hybrid and the parent species. This study indicates that future work should focus on the relationships between SD and total vein length per unit area rather than on total leaf vein area per unit area within and across species.

2.
Plants (Basel) ; 12(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960057

RESUMO

Stomata are involved in transpiration and CO2 uptake by mediating gas exchange between internal plant tissues and the atmosphere. The capacity for gas exchange depends on stomatal density (SD), stomatal size, and pore dimensions. Most published work on stomatal quantification has assumed that stomatal distribution and stomatal density are spatially homogeneous across the leaf, but this assumption has been seldom tested. We selected 32 leaves from a Photinia hybrid, Photinia × fraseri 'Red Robin', and one of its parents, P. serratifolia. For each leaf, the leaf surface was divided into three or four equidistant layers along the apical-basal axis, and, in each layer, two positions, one closer to the midrib and the other closer to the leaf margin, were further selected. We calculated SD and mean nearest neighbor distance (MNND) for each lamina section and tested the scaling relationship between SD and MNND of the sampled stomatal centers using reduced major axis protocols. In addition, we calculated the stomatal aggregation index (SAI) for each lamina section to examine the spatial arrangement of stomata at the given size of field of view of 1.2 mm × 0.9 mm. We observed that SD decreased from the lamina apex towards the base for central lamina areas but varied little at leaf margins. An inverse scaling relationship between SD and MNND was observed for both species. This relationship could be used for SD estimation using the rapidly estimated trait, MNND. SAI did not vary significantly throughout leaf lamina, and the numerical values of SAI for all fields of view were greater than one, which indicates significant spatial repulsion between stomata. The study suggests that SD varies across leaf lamina to fine-tune plant water use and maximize carbon gain. However, spatial structures of stomata from different lamina sections exhibit similar patterns (i.e., spatial inhibition between stomata at small scales), probably due to hierarchical leaf vein patterns.

3.
Fitoterapia ; 164: 105341, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36309142

RESUMO

Five new norneolignans sinkianlignans G-K (1-5), one phenolic compound ferulagenol A (6) and seven known compounds (7-13) were isolated from Ferula sinkiangensis. All the norneolignans were racemic mixtures, and chiral HPLC was used to further separate them. Their structures were assigned, including absolute configurations, using spectroscopic and computational methods. Biological evaluation showed that compounds 1-9 had significant COX-2 inhibitory activity with IC50 values ranging from 3.00 µM to 23.19 µM.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Ferula , Estrutura Molecular , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ferula/química , Ciclo-Oxigenase 2
4.
Front Plant Sci ; 14: 1322245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179478

RESUMO

Foliage leaves are essential for plant survival and growth, and how plants allocate biomass to their leaves reveals their economic and ecological strategies. Prior studies have shown that leaf-age significantly influences leaf biomass allocation patterns. However, unravelling the effects of ontogeny on partitioning biomass remains a challenge because it is confounded by the effects of environmental factors. Here, we aim to elucidate whether leaf-age affects the allocation to the lamina and petiole by examining leaves of known age growing in the same general environmental context. We sampled 2698 Photinia serratifolia leaves developing in the same environment from April to November 2021, representing eight leaf-ages (n > 300 for each leaf-age). Petiole and lamina biomass, and lamina area were measured to evaluate the scaling relationships using reduced major axis regression protocols. The bootstrap percentile method was used to determine the differences in scaling exponents among the different leaf-ages. ANOVA with Tukey's HSD was used to compare the ratios of petiole and lamina biomass to lamina area across the leaf-ages. Correlation tests were used to determine if exponents, intercepts, and ratios differed significantly across the different leaf-ages. The data indicated that (i) the ratio of petiole and lamina biomass to lamina area and the scaling exponent of lamina biomass versus lamina area correlate positively with leaf-age, and (ii) the scaling exponent of petiole biomass versus lamina area correlates negatively with leaf-age. Leaf maturation process involves an inverse proportional allocation between lamina and petiole biomass for expanding photosynthetic area. This phenomenon underscores the effect of leaf-age on biomass allocation and the importance of adopting an ontogenetic perspective when entertaining plant scaling theories and unravelling the principles governing shifts in biomass allocation throughout the leaf lifespan.

5.
Plants (Basel) ; 11(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36145770

RESUMO

Leaf shape and size can vary between hybrids and their parents. However, this has seldom been quantitatively tested. Photinia × fraseri is an important landscaping plant in East Asia as a hybrid between evergreen shrubs P. glabra and P. serratifolia. Its leaf shape looks like that of P. serratifolia. To investigate leaf shape, we used a general equation for calculating the leaf area (A) of broad-leaved plants, which assumes a proportional relationship between A and product of lamina length (L) and width (W). The proportionality coefficient (which is referred to as the Montgomery parameter) serves as a quantitative indicator of leaf shape, because it reflects the proportion of leaf area A to the area of a rectangle with L and W as its side lengths. The ratio of L to W, and the ellipticalness index were also used to quantify the complexity of leaf shape for elliptical leaves. A total of >4000 leaves from P. × fraseri and P. serratifolia (with >2000 leaves for each taxon) collected on a monthly basis was used to examine: (i) whether there is a significant difference in leaf shape between the two taxa, and (ii) whether there is a monotonic or parabolic trend in leaf shape across leaf ages. There was a significant difference in leaf shape between the two taxa (p < 0.05). Although there were significant differences in leaf shape on a monthly basis, the variation in leaf shape over time was not large, i.e., leaf shape was relatively stable over time for both taxa. However, the leaf shape of the hybrid was significantly different from its parent P. serratifolia, which has wider and more elliptical leaves than the hybrid. This work demonstrates that variations in leaf shape resulting from hybridization can be rigorously quantified and compared among species and their hybrids. In addition, this work shows that leaf shape does not changes as a function of age either before or after the full expansion of the lamina.

6.
Bioorg Chem ; 127: 105986, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35777232

RESUMO

Sinkianlignans A - D (1-4), four new sesquilignans with an unusual architectures was characterized with a rarely α-γ', ß-γ', and γ-γ' linkage pattern, and sinkianlignans E - F (5 and 6), two lignans, were isolated from the Ferula sinkiangensis. Hypothetic biosynthetic pathway of compound 3 contain a newly formed six-membered C-ring by Diels-Alder cycloaddition. The structures of isolates were established by spectroscopic techniques and computational methods. Biological evaluation of all the isolated compounds revealed that compounds 2a and 2b could inhibit IL-6 and TNF-α production in lipopolysaccharide (LPS) induced RAW264.7 cells in a dose-dependent manner.


Assuntos
Ferula , Sesquiterpenos , Anti-Inflamatórios/farmacologia , Ferula/química , Estrutura Molecular , Resinas Vegetais , Sesquiterpenos/química
7.
Front Plant Sci ; 13: 860206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463398

RESUMO

Leaf lamina mass and area are closely correlated with the photosynthetic capacity and competitive ability of plants, whereas leaf age has been demonstrated to affect physiological processes such as photosynthesis. However, it remains unknown whether the lamina mass vs. area scaling relationship is influenced by leaf age, which is important for understanding plant adaptive strategies and, more broadly, resource utilization and growth. We measured the leaf functional traits of five leaf-age groups of Photinia × fraseri for a total of 1,736 leaves. ANOVA followed by Tukey's honestly significant difference test was used to compare the functional traits among the five leaf-age groups. Reduced major axis regression protocols were used to fit the scaling relationship between lamina mass and area, and the bootstrap percentile method was used to compare the lamina mass vs. area scaling relationships among the leaf-age groups. Lamina area, and the ratio of lamina dry mass to lamina fresh mass increased with increasing leaf age. Lamina fresh mass per unit area, and lamina dry mass per unit area both exhibited a parabolic-like trend as leaf age increased, i.e., at the leaf maturation stage, it showed a slight but significant decline. The phenomenon called diminishing returns were confirmed by each of the five leaf-age groups, i.e., all of the numerical values of the scaling exponents of lamina mass vs. area were significantly greater than 1. There were significant differences in the scaling exponents of lamina mass vs. area for the leaves across different sampling times. The scaling exponents were lower at the early rapid growth stage, indicating a lower cost for increasing leaf area compared to the leaf maturation stage. These data are consistent with leaves undergoing a transition from resource acquisition to resource conservation in the process of their development and growth.

8.
Ecol Evol ; 12(4): e8792, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386866

RESUMO

Most insects engage in winged flight. Wing loading, that is, the ratio of body mass to total wing area, has been demonstrated to reflect flight maneuverability. High maneuverability is an important survival trait, allowing insects to escape natural enemies and to compete for mates. In some ecological field experiments, there is a need to calculate the wing area of insects without killing them. However, fast, nondestructive estimation of wing area for insects is not available based on past work. The Montgomery equation (ME), which assumes a proportional relationship between leaf area and the product of leaf length and width, is frequently used to calculate leaf area of plants, in crops with entire linear, lanceolate leaves. Recently, the ME was proved to apply to leaves with more complex shapes from plants that do not have any needle leaves. Given that the wings of insects are similar in shape to broad leaves, we tested the validity of the ME approach in calculating the wing area of insects using three species of cicadas common in eastern China. We compared the actual area of the cicadas' wings with the estimates provided by six potential models used for wing area calculation, and we found that the ME performed best, based on the trade-off between model structure and goodness of fit. At the species level, the estimates for the proportionality coefficients of ME for three cicada species were 0.686, 0.693, and 0.715, respectively. There was a significant difference in the proportionality coefficients between any two species. Our method provides a simple and powerful approach for the nondestructive estimation of insect wing area, which is also valuable in quantifying wing morphological features of insects. The present study provides a nondestructive approach to estimating the wing area of insects, allowing them to be used in mark and recapture experiments.

9.
Ann Bot ; 128(7): 875-886, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34397092

RESUMO

BACKGROUND AND AIMS: In hierarchically reticulate venation patterns, smaller orders of veins form areoles in which stomata are located. This study aimed to quantify the spatial relationship among stomata at the areole level. METHODS: For each of 12 leaves of M. cavaleriei var. platypetala, we assumed that stomatal characteristics were symmetrical on either side of the midrib, and divided the leaf surface on one side of the midrib into six layers equidistantly spaced along the apical-basal axis. We then further divided each layer into three positions equidistantly spaced from midrib to leaf margin, resulting in a total of 18 sampling locations. In addition, for 60 leaves, we sampled three positions from midrib to margin within only the widest layer of the leaf. Stomatal density and mean nearest neighbour distance (MNND) were calculated for each section. A replicated spatial point pattern approach quantified stomatal spatial relationships at different distances (0-300 µm). KEY RESULTS: A tendency towards regular arrangement (inhibition as opposed to attraction or clustering) was observed between stomatal centres at distances <100 µm. Leaf layer (leaf length dimension) had no significant effect on local stomatal density, MNND or the spatial distribution characteristics of stomatal centres. In addition, we did not find greater inhibition at the centre of areoles, and in positions farther from the midrib. CONCLUSIONS: Spatial inhibition might be caused by the one-cell-spacing rule, resulting in more regular arrangement of stomata, and it was found to exist at distances up to ~100 µm. This work implies that leaf hydraulic architecture, consisting of both vascular and mesophyll properties, is sufficient to prevent important spatial variability in water supply at the areole level.


Assuntos
Magnoliaceae , Folhas de Planta , Estômatos de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...