Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pain ; 20: 17448069241242982, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38485252

RESUMO

Itch is a somatosensory sensation to remove potential harmful stimulation with a scratching desire, which could be divided into mechanical and chemical itch according to diverse stimuli, such as wool fiber and insect biting. It has been reported that neuropeptide Y (NPY) neurons, a population of spinal inhibitory interneurons, could gate the transmission of mechanical itch, with no effect on chemical itch. In our study, we verified that chemogenetic activation of NPY neurons could inhibit the mechanical itch as well as the chemical itch, which also attenuated the alloknesis phenomenon in the chronic dry skin model. Afterwards, intrathecal administration of NPY1R agonist, [Leu31, Pro34]-NPY (LP-NPY), showed the similar inhibition effect on mechanical itch, chemical itch and alloknesis as chemo-activation of NPY neurons. Whereas, intrathecal administration of NPY1R antagonist BIBO 3304 enhanced mechanical itch and reversed the alloknesis phenomenon inhibited by LP-NPY treatment. Moreover, selectively knocking down NPY1R by intrathecal injection of Npy1r siRNA enhanced mechanical and chemical itch behavior as well. These results indicate that NPY neurons in spinal cord regulate mechanical and chemical itch, and alloknesis in dry skin model through NPY1 receptors.


Assuntos
Neuropeptídeo Y , Receptores de Neuropeptídeo Y , Animais , Prurido/induzido quimicamente , Transdução de Sinais , Medula Espinal
2.
CNS Neurosci Ther ; 30(2): e14367, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37452499

RESUMO

AIMS: Itch is an unpleasant sensation that severely impacts the patient's quality of life. Recent studies revealed that the G protein-coupled estrogen receptor (GPER) may play a crucial role in the regulation of pain and itch perception. However, the contribution of the GPER in primary sensory neurons to the regulation of itch perception remains elusive. This study aimed to investigate whether and how the GPER participates in the regulation of itch perception in the trigeminal ganglion (TG). METHODS AND RESULTS: Immunofluorescence staining results showed that GPER-positive (GPER+ ) neurons of the TG were activated in both acute and chronic itch. Behavioral data indicated that the chemogenetic activation of GPER+ neurons of the TG of Gper-Cre mice abrogated scratching behaviors evoked by acute and chronic itch. Conversely, the chemogenetic inhibition of GPER+ neurons resulted in increased itch responses. Furthermore, the GPER expression and function were both upregulated in the TG of the dry skin-induced chronic itch mouse model. Pharmacological inhibition of GPER (or Gper deficiency) markedly increased acute and chronic itch-related scratching behaviors in mouse. Calcium imaging assays further revealed that Gper deficiency in TG neurons led to a marked increase in the calcium responses evoked by agonists of the transient receptor potential ankyrin A1 (TRPA1) and transient receptor potential vanilloid V1 (TRPV1). CONCLUSION: Our findings demonstrated that the GPER of TG neurons is involved in the regulation of acute and chronic itch perception, by modulating the function of TRPA1 and TRPV1. This study provides new insights into peripheral itch sensory signal processing mechanisms and offers new targets for future clinical antipruritic therapy.


Assuntos
Cálcio , Gânglio Trigeminal , Animais , Camundongos , Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Prurido/induzido quimicamente , Prurido/metabolismo , Qualidade de Vida , Receptores de Estrogênio/metabolismo , Gânglio Trigeminal/metabolismo , Canais de Cátion TRPV/metabolismo
3.
CNS Neurosci Ther ; 30(4): e14514, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37902196

RESUMO

AIMS: Itch, a common uncomfortable sensory experience, occurs frequently in inflammatory or allergic disorders. In recent years, with the discovery of itch-specific pathways in the peripheral and central nervous system, the association between immunology and neural pathways has gradually emerged as the main mechanism of itch. Although many studies have been conducted on itch, no bibliometric analysis study focusing on this topic has been conducted. This study aimed to explore the research hotspots and trends in the itch field from a bibliometric perspective. METHODS: Publications relevant to itch, published from 2003 to 2022, were retrieved from the Science Citation Index-Expanded of Web of Science Core Collection. Publications were critically reviewed and analyzed with CiteSpace software, Vosviewer, and the bibliometric online analysis platform. Visual maps were conducted in terms of annual production, collaborating countries or institutions, productive authors, core journals, co-cited references, and keyword bursts. RESULTS: 2395 articles on itch that met our criteria were identified and the quantity of publications has been increasing rapidly since 2012. The USA was the most influential country. University Hospital Münster was the institution with the most publications. Gil Yosipovitch was the most prolific author. Atopic dermatitis (AD), intradermal serotonin, chronic pruritus, mechanical itch, gastrin-releasing peptide, substance p, interleukin-31 receptor, histamine-induced itch, bile acid, scratching behavior, and h-4 receptor were the top 11 clusters in co-citation cluster analysis. Keyword burst analysis suggested that treatment, inflammation, and AD are current research hotspots. CONCLUSION: Global publications on itch research have increased steadily and rapidly over the past 20 years. Inflammation and AD are current research hotspots. The neuroimmunological and neuroinflammatory mechanisms of itch, as well as clinical assessment methods and therapeutic targets, will be novel research directions in the future. This study provides guidance for further itch research.


Assuntos
Inflamação , Prurido , Humanos , Prurido/epidemiologia , Bibliometria , Sistema Nervoso Central , Histamina
4.
Heliyon ; 9(11): e22644, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38074868

RESUMO

Hepatic ischemia-reperfusion injury (HIRI) is a complex pathological phenomenon dominated by the innate immune system and involves a variety of immune cells. This condition frequently occurs during hepatectomy, liver transplantation or hemorrhagic shock. HIRI represents an important factor in the poor prognosis of patients after liver surgery. However, there is still a lack of effective intervention to reduce the incidence of HIRI. In this study, we aimed to describe the overall structure of scientific research on HIRI over the past 20 years and provide valuable information and guidelines for future researchers. Bibliometric analysis was used to comprehensively review developments in HIRI and changes in our understanding of HIRI over the past two decades. We identified a total of 4267 articles on HIRI that were published over the past 20 years of which basic research was predominant. Collaboration network analysis revealed that China, the University of California Los Angeles, and Ronald W Busuttil were the most influential country, institute, and scholar, respectively. Co-occurrence cluster analysis revealed that ischemic preconditioning, liver cirrhosis, hepatic I/R injury, autophagy, acute liver failure, oxygen, donation after circulatory death, Nlrp3, remote organ, and microdialysis were the top 10 clusters. Keyword burst detection indicated that autophagy, inflammation, and early allograft dysfunction represent the current research hotspots. In summary, this is the first bibliometric analysis of HIRI research. Our timely analysis of these hotpots and research trends may provide a framework for future researchers and further promote research on the key mechanisms and therapeutic measures in this field.

5.
BMC Pharmacol Toxicol ; 24(1): 46, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37740245

RESUMO

OBJECTIVES: Our previous clinical trial showed that etomidate requirements to reach an appropriate level of anesthesia in patients with obstructive jaundice were reduced, which means that these patients are more sensitive to etomidate. However, the mechanism is still not completely clear. The present study was aimed to investigate the mechanism by which bilirubin facilitates etomidate induced sedation. METHODS: A bile duct ligation (BDL) rat model was used to simulate obstructive jaundice. Anesthesia sensitivity to etomidate was determined by the time to loss of righting reflex (LORR). Intrathecal injection of bilirubin was used to test the effects of bilirubin on etomidate induced sedation. The modulating effects of bilirubin on GABA responses were studied using the whole-cell patch clamp technique. RESULTS: The time to LORR induced by etomidate was significantly decreased in the BDL groups (p < 0.05), and unconjugated bilirubin in serum and cerebrospinal fluid (CSF) were markedly increased (p < 0.05). The time to LORR induced by etomidate was decreased after intrathecal injection of bilirubin (p < 0.05). A bilirubin concentration of 1.0 µM increased the GABA-induced currents of rat cortical pyramidal neurons (p < 0.05). Furthermore, 1.0 µM bilirubin enhanced GABA-induced currents modulated by etomidate (p < 0.05). CONCLUSIONS: Our results demonstrated that pathologic bilirubin in CSF could enhance etomidate induced sedation. The mechanism may be that bilirubin increase the GABA-induced currents of rat pyramidal neurons.


Assuntos
Anestesia , Etomidato , Icterícia Obstrutiva , Humanos , Animais , Ratos , Etomidato/farmacologia , Ductos Biliares , Bilirrubina , Ácido gama-Aminobutírico/farmacologia
6.
Front Pharmacol ; 14: 1159753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153792

RESUMO

The rostral ventromedial medulla (RVM) is a bulbospinal nuclei in the descending pain modulation system, and directly affects spinal nociceptive transmission through pronociceptive ON cells and antinociceptive OFF cells in this area. The functional status of ON and OFF neurons play a pivotal role in pain chronification. As distinct pain modulative information converges in the RVM and affects ON and OFF cell excitability, neural circuits and transmitters correlated to RVM need to be defined for an in-depth understanding of central-mediated pain sensitivity. In this review, neural circuits including the role of the periaqueductal gray, locus coeruleus, parabrachial complex, hypothalamus, amygdala input to the RVM, and RVM output to the spinal dorsal horn are discussed. Meanwhile, the role of neurotransmitters is concluded, including serotonin, opioids, amino acids, cannabinoids, TRPV1, substance P and cholecystokinin, and their dynamic impact on both ON and OFF cell activities in modulating pain transmission. Via clarifying potential specific receptors of ON and OFF cells, more targeted therapies can be raised to generate pain relief for patients who suffer from chronic pain.

7.
Acta Neuropathol Commun ; 11(1): 65, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37062831

RESUMO

Unlike physiological stress, which carries survival value, pathological stress is widespread in modern society and acts as a main risk factor for visceral pain. As the main stress-responsive nucleus in the brain, the locus coeruleus (LC) has been previously shown to drive pain alleviation through direct descending projections to the spinal cord, but whether and how the LC mediates pathological stress-induced visceral pain remains unclear. Here, we identified a direct circuit projection from LC noradrenergic neurons to the rostral ventromedial medulla (RVM), an integral relay of the central descending pain modulation system. Furthermore, the chemogenetic activation of the LC-RVM circuit was found to significantly induce colorectal visceral hyperalgesia and anxiety-related psychiatric disorders in naïve mice. In a dextran sulfate sodium (DSS)-induced visceral pain model, the mice also presented colorectal visceral hypersensitivity and anxiety-related psychiatric disorders, which were associated with increased activity of the LC-RVM circuit; LC-RVM circuit inhibition markedly alleviated these symptoms. Furthermore, the chronic restraint stress (CRS) model precipitates anxiety-related psychiatric disorders and induces colorectal visceral hyperalgesia, which is referred to as pathological stress-induced hyperalgesia, and inhibiting the LC-RVM circuit attenuates the severity of colorectal visceral pain. Overall, the present study clearly demonstrated that the LC-RVM circuit could be critical for the comorbidity of colorectal visceral pain and stress-related psychiatric disorders. Both visceral inflammation and psychological stress can activate LC noradrenergic neurons, which promote the severity of colorectal visceral hyperalgesia through this LC-RVM circuit.


Assuntos
Neoplasias Colorretais , Dor Visceral , Ratos , Camundongos , Animais , Hiperalgesia/induzido quimicamente , Locus Cerúleo/patologia , Dor Visceral/patologia , Ratos Sprague-Dawley , Neoplasias Colorretais/patologia , Bulbo/patologia
8.
Neuroscience ; 524: 209-219, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958595

RESUMO

Postoperative cognitive dysfunction (POCD) is a medically induced, rapidly occurring postoperative disease, which is hard to recover and seriously threatens the quality of life, especially for elderly patients, so it is important to identify the risk factors for POCD and apply early intervention to prevent POCD. As we have known, pain can impair cognition, and many surgery patients experience different preoperative pain, but it is still unknown whether these patients are vulnerable for POCD. Here we found that chronic pain (7 days, but not 1 day acute pain) induced by Complete Freund's Adjuvant (CFA) injected in the hind paw of rats could easily induce spatial cognition and memory impairment after being exposed to sevoflurane anesthesia. Next, for the mechanisms, we focused on the Periaqueductal Gray Matter (PAG), a well-known pivotal nucleus in pain process. It was detected the existence of neural projection from ventrolateral PAG (vlPAG) to adjacent nucleus Dorsal Raphe (DR), the origin of serotonergic projection for the whole cerebrum, through virus tracing and patch clamp recordings. The Immunofluorescence staining and western blot results showed that Tryptophan Hydroxylase 2 (TPH2) for serotonin synthesis in the DR was increased significantly in the rats treated with CFA for 7 days and sevoflurane for 3 hours, while chemo-genetic inhibition of the vlPAG-DR projection induced obvious spatial learning and memory impairment. Our study suggests that preoperative chronic pain may facilitate cognitive function impairment after receiving anesthesia through the PAG-DR neural circuit, and preventative analgesia should be a considerable measure to reduce the incidence of POCD.


Assuntos
Dor Crônica , Complicações Cognitivas Pós-Operatórias , Humanos , Ratos , Animais , Idoso , Substância Cinzenta Periaquedutal/fisiologia , Núcleo Dorsal da Rafe , Sevoflurano , Qualidade de Vida
9.
Front Endocrinol (Lausanne) ; 14: 1078149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761200

RESUMO

Background: Metabolic dysfunction-associated fatty liver disease (MAFLD) has become the most common chronic liver disease. MAFLD is a major risk factor for end-stage liver disease including cirrhosis and primary liver cancer. The pathogenesis of MAFLD is complex and has not yet been clarified. To the best of our knowledge, few studies have conducted quantitative bibliometric analysis to evaluate published MAFLD research. In this study, we conducted a comprehensive analysis of MAFLD publications over the past decade to summarize the current research hotspots and predict future research directions in this field. Methods: Articles into MAFLD published from 2012 to 2021 were identified from the Science Citation Index-Expanded of Web of Science Core Collection. CiteSpace software, VOSviewer, the "bibliometrix" R package, and the Online Analysis Platform of Literature Metrology were used to analyze the current publication trends and hotspots. Results: We retrieved 13959 English articles about MAFLD published from 2012 to 2021. Primary sites of publication were dominated by the United States until 2014, when China became the source of most published MAFLD-related research papers. The United States was found to be the most engaged country in international cooperative efforts. Shanghai Jiao Tong University was the most productive institution. Loomba R was the most productive author with 123 articles. The co-cited keyword cluster tag showed ten main clusters: #0 liver fibrosis, #1 hemoglobin, #2 metabolic associated fatty liver disease, #3 egcg, #4 myocardial infarction, #5 heart disease, #6 pnpla3, #7 hepatocellular carcinoma, #8 noninvasive marker, and #9 children. Keyword burst analysis showed that gut microbiota was the highest-intensity research hotspot. Conclusion: In the past decade, the number of publications on MAFLD increased dramatically, especially in the last three years. Gut microbiota became an important research direction for etiological and therapeutic investigations into MAFLD. Insulin resistance was also a key factor in studying the development of MAFLD in recent years. Liver fibrosis was an important focus of disease development. This study provides systematic information, helps guide future research, and helps to identify mechanisms and new treatment methods for MAFLD.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Criança , Humanos , China , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Cirrose Hepática/epidemiologia , Cirrose Hepática/etiologia , Bibliometria , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/etiologia
10.
J Clin Invest ; 133(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36346677

RESUMO

The rostral ventromedial medulla (RVM) exerts bidirectional descending modulation of pain attributable to the activity of electrophysiologically identified pronociceptive ON and antinociceptive OFF neurons. Here, we report that GABAergic ON neurons specifically express G protein-coupled estrogen receptor (GPER). GPER+ neurons exhibited characteristic ON-like responses upon peripheral nociceptive stimulation. Optogenetic activation of GPER+ neurons facilitated, but their ablation abrogated, pain. Furthermore, activation of GPER caused depolarization of ON cells, potentiated pain, and ameliorated morphine analgesia through desensitizing µ-type opioid receptor-mediated (MOR-mediated) activation of potassium currents. In contrast, genetic ablation or pharmacological blockade of GPER attenuated pain, enhanced morphine analgesia, and delayed the development of morphine tolerance in diverse preclinical pain models. Our data strongly indicate that GPER is a marker for GABAergic ON cells and illuminate the mechanisms underlying hormonal regulation of pain and analgesia, thus highlighting GPER as a promising target for the treatment of pain and opioid tolerance.


Assuntos
Analgésicos Opioides , Morfina , Ratos , Animais , Morfina/farmacologia , Analgésicos Opioides/farmacologia , Ratos Sprague-Dawley , Tolerância a Medicamentos , Dor/tratamento farmacológico , Dor/genética , Neurônios , Receptores Opioides mu
11.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 404-416, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36514220

RESUMO

The dry skin tortures numerous patients with severe itch. The transient receptor potential cation channel V member 1 (TRPV1) and A member 1 (TRPA1) are two essential receptors for peripheral neural coding of itch sensory, mediating histaminergic and nonhistaminergic itch separately. In the dorsal root ganglion, transmembrane protein 100 (TMEM100) is structurally related to both TRPV1 and TRPA1 receptors, but the exact role of TMEM100 in itch sensory coding is still unknown. Here, in this study, we find that TMEM100 + DRG neurons account for the majority of activated neurons in an acetone-ether-water (AEW)-induced dry skin itch model, and some TMEM100 + DRG neurons are colocalized with both TRPA1 and the chloroquine-related Mrgpr itch receptor family. Both the expression and function of TRPA1 channels, but not TRPV1 channels, are upregulated in the AEW model, and specific DRG Tmem100 gene knockdown alleviates AEW-induced itch and rescues the expression and functional changes of TRPA1. Our results strongly suggest that TMEM100 protein in DRG is the main facilitating factor for dry-skin-related chronic itch, and specific suppression of TMEM100 in DRG could be a novel effective treatment strategy for patients who suffer from dry skin-induced itch.


Assuntos
Prurido , Canais de Potencial de Receptor Transitório , Humanos , Gânglios Espinais/metabolismo , Proteínas de Membrana/metabolismo , Prurido/induzido quimicamente , Prurido/genética , Prurido/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Regulação para Cima
12.
Front Med (Lausanne) ; 9: 975376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457577

RESUMO

Background and aims: The gut microbiota is involved in the regulation of pain, which is proved by plenty of evidence. Although a substantial quantity of research on the link between the gut microbiota and pain has emerged, no study has focused on the bibliometric analysis of this topic. We aim to present a bibliometric review of publications over the past 20 years and predict research hot spots. Methods: Relevant publications between 2002 and 2021 were extracted from the Science Citation Index-Expanded (SCI-EXPANDED) of the Web of Science Core Collection (WoSCC) database on April 22, 2022. CiteSpace (version 5.8 R3c), VOSviewer, the Online Analysis Platform of Literature Metrology, and the R package bibliometrix were used to analyze and visualize. Results: A total of 233 articles have been published between 2002 and 2021. The number of publication outputs increased rapidly since 2016. The collaboration network revealed that the USA, Baylor College of Medicine, and Vassilia Theodorou were the most influential country, institute, and scholar, respectively. Alimentary pharmacology and therapeutics and Gut were the most co-cited journal and Neurogastroenterology and Motility was the most productive journal. Visceral sensitivity, fibromyalgia, gastrointestinal, chronic pain, stress, gut microbiome, LGG, brain-gut axis, SLAB51, and sequencing were the top 10 clusters in co-occurrence cluster analysis. Keyword burst detection indicated that the brain-gut axis and short-chain fatty acid were the current research hot spots. Conclusion: Research on the links between the gut microbiota and pain has increased rapidly since 2016. The current research focused on the brain-gut axis and short-chain fatty acid. Accordingly, the SCFAs-mediated mechanism of pain regulation will be a research direction of great importance on the links between the gut microbiota and pain. This study provided instructive assistance to direct future research efforts on the links between the gut microbiota and pain.

13.
Front Endocrinol (Lausanne) ; 13: 990953, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329894

RESUMO

Background: The prevalence of metabolic associated fatty liver disease (MAFLD) presented a booming growth over recent years in the whole world. MAFLD was associated with a higher risk of end-stage liver disease, hepatocellular carcinoma and liver transplantation. Accumulating evidence indicated that gut microbiota and MAFLD were interrelated and interacted with each other. However, to the knowledge of the authors, no bibliometric quantitative analysis has been carried out to evaluate the links between the gut microbiota and MAFLD. This study aimed to use bibliometric analysis to evaluate current publication trends and hotspots in the links between the gut microbiota and MAFLD, in order to advance research in this field. Methods: The articles regarding the links between gut microbiota and MAFLD from 2002 to 2021 were identified from the Science Citation Index-Expanded of Web of Science Core Collection. CiteSpace software, Vosviewer, the R package "bibliometrix" and the Online Analysis Platform of Literature Metrology were used to analyze current publication trends and hotspots in this field. Results: A total of 707 articles were retrieved regarding the links between gut microbiota and MAFLD from 2002 to 2021. The USA occupied the leading role until 2015 and the dominance of China started in 2016. The USA was the most frequently involved country in international cooperation. Shanghai Jiao Tong University was the most productive institution. Ina Bergheim was the most productive author, publishing 14 articles. The co-citation keywords cluster label displayed ten main clusters: probiotics, bile acid, immune function, adolescents, nutritional genomics, high fat diet, systems biology, lipopolysaccharides, phosphatidylcholine, and oxidative stress. Keyword bursts analysis indicated that diet induced obesity, metabolic syndrome, ppar alpha, and lactobacillus were the research hotspots with high strength. Conclusion: The number of publications covering the links of gut microbiota and MAFLD increased dramatically in the past decade and especially became exponential growth in the last 3 years. Probiotics and bile acid will be the research direction of great importance in the etiology and novel treatment for MAFLD. This study provided systematic information and instructive assistance for future research work, that helped to discover the mechanisms and new treatments of MAFLD.


Assuntos
Microbioma Gastrointestinal , Probióticos , Humanos , Adolescente , China , Bibliometria , Ácidos e Sais Biliares
14.
Brain Sci ; 12(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36358412

RESUMO

In recent years, the information crosstalk between the central nervous system and the periphery has been a hot topic, such as the brain-gut axis, brain-lung axis, etc. Among them, some studies have shown that brainstem nuclei activity can significantly affect the progression of peripheral tumor; however, regarding lung cancer, our understanding of the basic characteristics of the lung-innervating brain nuclei responsive to lung cancer progression remains deficient. Therefore, we used the pseudorabies virus for retrograde labeling of nerves to study the neural circuits between the lung and brain. We then established a mouse orthotopic lung cancer model and used the expression of the c-Fos gene in brain regions to characterize activated brain circuits and compared these results with those of the control group. We focused on c-Fos activity in nuclei associated with retrograde tracing regions of the brainstem. We found over 16 nuclei in the whole brain with direct or indirect lung innervation through neural retrograde labeling with the pseudorabies virus. We further revealed that the neuronal activity of the rostral ventrolateral reticular nucleus (RVL), caudal nucleus of Raphe (raphe obscurus nucleus, ROb), Raphe pallidus nucleus (RPa), and ventral gigantocellular reticular nucleus (GiV) in the rostral ventromedial and lateral medulla were significantly changed in an orthotopic lung cancer mouse model by the immunostaining of c-Fos early responsive protein. Thus, the distinctive rostroventral medulla area, functionally closely related to the vagus nerve, likely plays a role in central neural interaction with peripheral lung tumors and deserves future investigation.

15.
Front Nutr ; 9: 933211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911114

RESUMO

Glycolipid metabolic diseases, including type 2 diabetes, non-alcoholic fatty liver disease, obesity, hypertension, dyslipidemia, and atherosclerosis, which have become a major public health concern worldwide, are mainly triggered by hepatic glycolipid metabolism disorder. Bibliometric analysis has provided a comprehensive review of developments in hepatic glycolipid metabolism research and changes in research hotspots over the past 20 years. The articles regarding hepatic glycolipid metabolism from 2002 to 2021 were identified from the Science Citation Index-Expanded of Web of Science Core Collection. Acquired data were then processed by the CiteSpace software and the Online Analysis Platform of Literature Metrology to analyze trends and predict hot spots in this field. A total of 4,856 articles regarding hepatic glycolipid metabolism published from 2002 to 2021 were selected. The leading country was China. The Chinese Academy of Sciences was the most productive institution. Co-citation cluster labels revealed characteristics of ten main clusters: non-alcoholic fatty liver disease, gut microbiota, adiponectin, fructose, fgf21, fatty acid, liver x receptor, nr4a, obese mice, and bile acids. Keyword bursts analysis indicated that management, non-alcoholic fatty liver disease, and modulation were the newly emerging research hot spots. We described the overall structure of scientific research on hepatic glycolipid metabolism and presented systematic information to other researchers. The current focus on NAFLD and gut microbiota is critical to further study and will help explore effective therapeutic strategy for aberrant glycolipid metabolism in liver.

16.
Exp Cell Res ; 418(1): 113224, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35643178

RESUMO

PURPOSE: Acute respiratory distress syndrome (ARDS), a severe medical condition, is among the major causes of death in critically ill patients. Morphine is used as a therapeutic agent against severe pain. The mechanisms of its reactions over ARDS are not fully understood. The aim of this study was to assess the mechanism of morphine in rats with ARDS. METHODS: Rats were injected with lipopolysaccharide to induce ARDS, and some rats were pre-treated with graded doses of morphine in the lateral ventricles to assess survival and non-infected mortality. Immunohistochemical and HE staining were performed to measure MPO and CD68 activity in the lungs and lung injury. ELISA was conducted to detect the inflammatory factor levels in the plasma and BALF. Co-labeling of µ-opioid receptor (MOR) and c-Fos was observed in the brain tissues. MOR-positive cells in brain tissues were evaluated using immunohistochemistry. The effect of MOR antagonists on ARDS was examined in rats by pre-injection of naloxone or methylnaltrexone. The expression of MyD88, TLR4, and NF-κB was lastly assessed. RESULTS: Dose-independent improvement was observed in respiratory capacity and lung injury in ARDS rats after morphine pre-injection, along with reduced inflammatory factors in the plasma and BALF. MOR-positive cells were elevated after morphine, which occurred within the ventral part of the gigantocellular reticular nucleus (GiV). Naloxone and methylnaltrexone blocked the effects of morphine via central and peripheral MOR. Morphine activated TLR pathway in a MyD88-dependent manner. CONCLUSION: Morphine activates MOR within the GiV and the TLR pathway to attenuate ARDS in rats.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Lipopolissacarídeos , Morfina/farmacologia , Fator 88 de Diferenciação Mieloide , Naloxona/farmacologia , Ratos , Receptores Opioides , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/tratamento farmacológico
17.
Front Immunol ; 13: 897487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693774

RESUMO

N6-methyladenosine (m6A) RNA modification is a fundamental determinant of mRNA metabolism in eukaryotic cells and is involved in numerous physiological and pathological processes. However, the specific role of m6A modification in sepsis-induced acute respiratory distress syndrome(ARDS) remains unknown. Here, we show that the levels of m6A RNA were significantly decreased in septic lungs and that METTL3 was the main regulator involved in the absence of m6A RNA modification. Pulmonary endothelial barrier damage is a critical process in the pathogenesis of acute lung injury during sepsis. METTL3 regulated endothelial barrier dysfunction and inflammatory responses in sepsis-induced ARDS in vivo and in vitro. Furthermore, we identified tripartite motif-containing (Trim)59 as a key m6A effector and Trim59 deficiency exacerbated lung injury. Mechanistically, METTL3 inhibited endothelial injury in sepsis-induced ARDS through Trim59-associated NF-κB inactivation. Our findings revealed novel insights into epitranscriptional mechanisms in sepsis-induced ARDS via m6A modifications, which has important application value in the diagnosis, prognosis, and molecular-targeted therapy of sepsis-associated lung injury.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Sepse , Lesão Pulmonar Aguda/etiologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Síndrome do Desconforto Respiratório/etiologia , Sepse/complicações , Proteínas com Motivo Tripartido/genética
18.
J Neurosci ; 41(37): 7727-7741, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34349001

RESUMO

Chronic itch is a troublesome condition and often difficult to cure. Emerging evidence suggests that the periaqueductal gray (PAG)-rostral ventromedial medulla (RVM) pathway may play an important role in the regulation of itch, but the cellular organization and molecular mechanisms remain incompletely understood. Here, we report that a group of RVM neurons distinctively express the G-protein-coupled estrogen receptor (GPER), which mediates descending inhibition of itch. We found that GPER+ neurons in the RVM were activated in chronic itch conditions in rats and mice. Selective ablation or chemogenetic suppression of RVM GPER+ neurons resulted in mechanical alloknesis and increased scratching in response to pruritogens, whereas chemogenetic activation of GPER+ neurons abrogated itch responses, indicating that GPER+ neurons are antipruritic. Moreover, GPER-deficient mice and rats of either sex exhibited hypersensitivity to mechanical and chemical itch, a phenotype reversible by the µ type opioid receptor (MOR) antagonism. Additionally, significant MOR phosphorylation in the RVM was detected in chronic itch models in wild-type but not in GPER-/- rats. Therefore, GPER not only identifies a population of medullary antipruritic neurons but may also determine the descending antipruritic tone through regulating µ opioid signaling.SIGNIFICANCE STATEMENT Therapeutic options for itch are limited because of an as yet incomplete understanding of the mechanisms of itch processing. Our data have provided novel insights into the cellular organization and molecular mechanisms of descending regulation of itch in normal and pathologic conditions. GPER+ neurons (largely GABAergic) in the RVM are antipruritic neurons under tonic opioidergic inhibition, activation of GPER promotes phosphorylation of MOR and disinhibition of the antipruritic GPER+ neurons from inhibitory opioidergic inputs, and failure to mobilize GPER+ neurons may result in the exacerbation of itch. Our data also illuminate on some of the outstanding questions in the field, such as the mechanisms underlying sex bias in itch, pain, and opioid analgesia and the paradoxical effects of morphine on pain and itch.


Assuntos
Bulbo/metabolismo , Neurônios/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Feminino , Masculino , Camundongos , Fosforilação , Prurido/genética , Prurido/metabolismo , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Receptores Opioides mu/metabolismo , Transdução de Sinais/fisiologia
19.
CNS Neurosci Ther ; 27(11): 1313-1326, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34255932

RESUMO

AIMS: Chronification of postoperative pain is a common clinical phenomenon following surgical operation, and it perplexes a great number of patients. Estrogen and its membrane receptor (G protein-coupled estrogen receptor, GPER) play a crucial role in pain regulation. Here, we explored the role of GPER in the rostral ventromedial medulla (RVM) during chronic postoperative pain and search for the possible mechanism. METHODS AND RESULTS: Postoperative pain was induced in mice or rats via a plantar incision surgery. Behavioral tests were conducted to detect both thermal and mechanical pain, showing a small part (16.2%) of mice developed into pain persisting state with consistent low pain threshold on 14 days after incision surgery compared with the pain recovery mice. Immunofluorescent staining assay revealed that the GPER-positive neurons in the RVM were significantly activated in pain persisting rats. In addition, RT-PCR and immunoblot analyses showed that the levels of GPER and phosphorylated µ-type opioid receptor (p-MOR) in the RVM of pain persisting mice were apparently increased on 14 days after incision surgery. Furthermore, chemogenetic activation of GPER-positive neurons in the RVM of Gper-Cre mice could reverse the pain threshold of pain recovery mice. Conversely, chemogenetic inhibition of GPER-positive neurons in the RVM could prevent mice from being in the pain persistent state. CONCLUSION: Our findings demonstrated that the GPER in the RVM was responsible for the chronification of postoperative pain and the downstream pathway might be involved in MOR phosphorylation.


Assuntos
Dor Crônica/genética , Bulbo/efeitos dos fármacos , Dor Pós-Operatória/genética , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Animais , Dor Crônica/fisiopatologia , Hiperalgesia/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medição da Dor , Dor Pós-Operatória/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/efeitos dos fármacos , Receptores Opioides mu/genética
20.
Acta Biochim Biophys Sin (Shanghai) ; 53(9): 1177-1188, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34244711

RESUMO

Stroke is the second leading cause of death and long-term disability worldwide, which lacks effective treatment. Perioperative stroke is associated with much higher rates of mortality and disability. The neuroprotective role of dexmedetomidine (Dex), a highly selective agonist of alpha2-adrenergic receptor, has been reported in a stroke rat model, and it was found that pretreatment of Dex before stroke could alleviate blood-brain barrier (BBB) breakdown. However, the underlying mechanisms are still unknown. As the brain endothelial cells are the main constituents of BBB and in high demand of energy, mitochondrial function of endothelial cells plays an important role in the maintenance of BBB. Given that dynamin-related protein 1 (Drp1) is a protein mediating mitochondrial fission, with mitochondrial fusion that balances mitochondrial morphology and ensures mitochondria function, the present study was designed to investigate the possible role of Drp1 in endothelial cells involved in the neuroprotective effects of Dex in ischemic stroke. Our results showed that preconditioning with Dex reduced infarction volume, alleviated brain water content and BBB damage, and improved neurological scores in middle cerebral artery occlusion rats. Meanwhile, Dex enhanced cell activity and decreased cell apoptosis in oxygen-glucose deprivation human brain microvascular endothelial cells in vitro. These protective effects of Dex were correlated with the mitochondrial morphology integrality of endothelial cells, mediated by increased phosphorylation of serine 637 in Drp1, and could be reversed by α2-adrenergic receptor antagonist Yohimbine and AMP-activated protein kinase inhibitor Compound C. These findings suggest new molecular pathways involved in the neuroprotective effects of Dex in ischemic stroke. As Dex is routinely used as a sedative drug clinically, our findings provide molecular evidence that it has perioperative neuroprotection from ischemic stroke.


Assuntos
Barreira Hematoencefálica/metabolismo , Dexmedetomidina/farmacologia , Dinaminas/metabolismo , AVC Isquêmico/tratamento farmacológico , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Adenilato Quinase/antagonistas & inibidores , Adenilato Quinase/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Dexmedetomidina/uso terapêutico , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/uso terapêutico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , AVC Isquêmico/etiologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...