Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 23(5): 736-748, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34498173

RESUMO

The Pacific oyster (Crassostrea gigas) genome is highly polymorphic and affluent in structural variations (SVs), a significant source of genetic variation underlying inter-individual differences. Here, we used two genome assemblies and 535 individuals of genome re-sequencing data to construct a comprehensive landscape of structural variations in the Pacific oyster. Through whole-genome alignment, 11,087 short SVs and 11,561 copy number variations (CNVs) were identified. While analysis of re-sequencing data revealed 511,170 short SVs and 979,486 CNVs, a total of 63,100 short SVs and 58,182 CNVs were identified in at least 20 samples and regarded as common variations. Based on the common short SVs, both Fst and Pi ratio statistical methods were employed to detect the selective sweeps between 20 oyster individuals from the fast-growing strain and 20 individuals from their corresponding wild population. A total of 514 overlapped regions (8.76 Mb), containing 746 candidate genes, were identified by both approaches, in addition with 103 genes within 61 common CNVs only detected in the fast-growing strains. The GO enrichment and KEGG pathway analysis indicated that the identified candidate genes were mostly associated with apical part of cell and were significantly enriched in several metabolism-related pathways, including tryptophan metabolism and histidine metabolism. This work provided a comprehensive landscape of SVs and revealed their responses to selection, which will be valuable for further investigations on genome evolution under selection in the oysters.


Assuntos
Crassostrea/genética , Variação Genética , Variação Estrutural do Genoma , Animais , Crassostrea/crescimento & desenvolvimento , Variações do Número de Cópias de DNA , Genoma , Transdução de Sinais
2.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810107

RESUMO

Transmembrane proteins are involved in an array of stress responses, particularly in thermo-sensation and thermo-regulation. In this study, we performed a genome-wide identification and characterization of the Transient Receptor Potential (TRP) genes in the Pacific oyster (Crassostrea gigas) and investigated their expression profiles after heat stress to identify critical TRPs potentially associated with thermal regulation. A total of 66 TRP genes were identified in the C. gigas, which showed significant gene expansion and tandem duplication. Meta-analysis of the available RNA-Seq data generated from samples after acute heat stress revealed a set of heat-inducible TRPs. Further examination of their expression profiles under chronic heat stress, and comparison between C. gigas and C. angulata, two oyster species with different tolerance levels to heat stress, led to the identification of TRPC3.6, TRPC3.7, and TRPV4.7 as important TRPs involved in thermal regulation in oysters. This work provided valuable information for future studies on the molecular mechanism of TRP mediated thermal tolerance, and identification of diagnostic biomarker for thermal stress in the oysters.


Assuntos
Crassostrea/fisiologia , Resposta ao Choque Térmico/genética , Transcriptoma , Canais de Potencial de Receptor Transitório/genética , Animais , Biologia Computacional/métodos , Crassostrea/classificação , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Invertebrados , Fenótipo , Filogenia , Estresse Fisiológico/genética , Vertebrados
3.
Front Genet ; 10: 610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316550

RESUMO

Fast growth is one of the most desired traits for all food animals, which affects the profitability of animal production. The Pacific oyster, Crassostrea gigas, is an important aquaculture shellfish around the world with the largest annual production. Growth of the Pacific oyster has been greatly improved by artificial selection breeding, but molecular mechanisms underlying growth remains poorly understood, which limited the molecular integrative breeding of fast growth with other superior traits. In this study, comparative transcriptome analyses between the fast-growing selectively bred Pacific oyster and unselected wild Pacific oysters were conducted by RNA-Seq. A total of 1,303 protein-coding genes differentially expressed between fast-growing oysters and wild controls were identified, of which 888 genes were expressed at higher levels in the fast-growing oysters. Functional analysis of the differentially expressed genes (DEGs) indicated that genes involved in microtubule motor activity and biosynthesis of nucleotides and proteins are potentially important for growth in the oyster. Positive selection analysis of genes at the transcriptome level showed that a significant number of ribosomal protein genes had undergone positive selection during the artificial selection breeding process. These results also indicated the importance of protein biosynthesis and metabolism for the growth of oysters. The alternative splicing (AS) of genes was also compared between the two groups of oysters. A total of 3,230 differential alternative splicing events (DAS) were identified, involved in 1,818 genes. These DAS genes were associated with specific functional pathways related to growth, such as "long-term potentiation," "salivary secretion," and "phosphatidylinositol signaling system." The findings of this study will be valuable resources for future investigation to unravel molecular mechanisms underlying growth regulation in the oyster and other marine invertebrates and to provide solid support for breeding application to integrate fast growth with other superior traits in the Pacific oyster.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA