Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36358129

RESUMO

The biofilm formation of C. albicans represents a major virulence factor during candidiasis. Biofilm-mediated drug resistance has necessitated the search for a new antifungal treatment strategy. In our previous study, a novel antimicrobial peptide named AMP-17 derived from Musca domestica was confirmed to have significant antifungal activity and suppress hyphal growth greatly in C. albicans. In the current work, we aimed to investigate the antibiofilm property of AMP-17 in C. albicans and explore the underlying mechanism. An antifungal susceptibility assay showed that AMP-17 exerted a strong inhibitory efficacy on both biofilm formation and preformed biofilms in C. albicans. Furthermore, AMP-17 was found to block the yeast-to-hypha transition and inhibit the adhesion of biofilm cells with a reduction in cellular surface hydrophobicity. A morphological analysis revealed that AMP-17 indeed suppressed typical biofilm formation and damaged the structures of the preformed biofilm. The RNA-seq showed that the MAPK pathway, biosynthesis of antibiotics, and essential components of the cell were mainly enriched in the biofilm-forming stage, while the citrate cycle (TCA cycle), phenylamine metabolism, and propanoate metabolism were enriched after the biofilm matured. Moreover, the co-expressed DEGs in the two pairwise comparisons highlighted the terms of transmembrane transporter activity, regulation of filamentation, and biofilm formation as important roles in the antibiofilm effect of AMP-17. Additionally, qRT-PCR confirmed that the level of the genes involved in cell adhesion, filamentous growth, MAPK, biofilm matrix, and cell dispersal was correspondingly altered after AMP-17 treatment. Overall, our findings reveal the underlying antibiofilm mechanisms of AMPs in C. albicans, providing an interesting perspective for the development of effective antifungal agents with antibiofilm efficacy in Candida spp.

2.
Arch Microbiol ; 204(10): 601, 2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36057891

RESUMO

The growth of Phytophthora capsica, Rhizoctonia solani, Fusarium graminearum, Fusarium oxysporum and Botrytis cinerea were all inhibited by the fermentation supernatant of Bacillus licheniformis TG116, a biocontrol strain isolated from Typhonium giganteum Engl. previously with broad-spectrum resistance to plant pathogens. The fermentation supernatant of the TG116 has a great stability on temperature and UV, and shows the biological activity of protease and cellulase. The antifungal protease produced by B. licheniformis TG116 was purified to homogeneity by ammonium sulfate precipitation, DEAE Sepharose Fast Flow column chromatography and Sephadex G-50 column chromatography. The inhibition of protease by the three surfactants increased with increasing concentration inhibition. Among these surfactants, EDTA showed the strongest inhibition, with only 25% protein activity at a concentration of 1.1 mmol·L-1. Gene amplification verified the presence of a gene fragment of serine protease in the strain TG116. The antimicrobial substance isolated from the fermentation broth of TG116 is a serine protease component.


Assuntos
Bacillus licheniformis , Phytophthora , Antifúngicos , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Serina Proteases/genética , Tensoativos/farmacologia
3.
Front Microbiol ; 13: 872322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531288

RESUMO

Global burden of fungal infections and related health risk has accelerated at an incredible pace, and multidrug resistance emergency aggravates the need for the development of new effective strategies. Candida albicans is clinically the most ubiquitous pathogenic fungus that leads to high incidence and mortality in immunocompromised patients. Antimicrobial peptides (AMPs), in this context, represent promising alternatives having potential to be exploited for improving human health. In our previous studies, a Cecropin-4-derived peptide named C18 was found to possess a broader antibacterial spectrum after modification and exhibit significant antifungal activity against C. albicans. In this study, C18 shows antifungal activity against C. albicans or non-albicans Candida species with a minimum inhibitory concentration (MIC) at 4∼32 µg/ml, and clinical isolates of fluconazole (FLZ)-resistance C. tropicalis were highly susceptible to C18 with MIC value of 8 or 16 µg/ml. Additionally, C18 is superior to FLZ for killing planktonic C. albicans from inhibitory and killing kinetic curves. Moreover, C18 could attenuate the virulence of C. albicans, which includes damaging the cell structure, retarding hyphae transition, and inhibiting biofilm formation. Intriguingly, in the Galleria mellonella model with C. albicans infection, C18 could improve the survival rate of G. mellonella larvae to 70% and reduce C. albicans load from 5.01 × 107 to 5.62 × 104 CFU. For mechanistic action of C18, the level of reactive oxygen species (ROS) generation and cytosolic Ca2 + increased in the presence of C18, which is closely associated with mitochondrial dysfunction. Meanwhile, mitochondrial membrane potential (△Ψm) loss and ATP depletion of C. albicans occurred with the treatment of C18. We hypothesized that C18 might inhibit C. albicans via triggering mitochondrial dysfunction driven by ROS generation and Ca2 + accumulation. Our observation provides a basis for future research to explore the antifungal strategies and presents C18 as an attractive therapeutic candidate to be developed to treat candidiasis.

4.
Curr Microbiol ; 76(9): 1066-1072, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31243536

RESUMO

Seven endophytic yeast strains were isolated from tangerine peel (Citrus reticulata Blanco) and genotyped through clustering with D1/D2 and ITS1-5.8S-ITS2 sequences from GenBank. Phenotypic characteristics were obtained through commercial kits and through assisted species identification. Indole-3-acetic acid (IAA) production by the yeast strains was assessed using Salkowski reagent and High-Performance Liquid chromatography (HPLC). The growth-promoting effects of the yeast were evaluated using the 'ragdoll' method. CRYb1, CRYb2 and CRYb7 isolates were identified as the closest species Hanseniaspora opuntiae. CRYb3 was identified as Pichia kluyveri. CRYb4, CRYb5 and CRYb6 were identified as Meyerozyma guilliermondii. CRYb1, CRYb5, CRYb6 and CRYb7 were found to be capable of IAA production. The most promising yeast strains now require further evaluation for their ability to promote plant growth in vitro and in vivo. These data increase our knowledge of the distribution and biological properties of endophytic yeast. This is important information that will be required to fully harness the growth-promoting properties of yeast strains.


Assuntos
Citrus/microbiologia , Endófitos/isolamento & purificação , Frutas/microbiologia , Pichia/isolamento & purificação , Citrus/efeitos dos fármacos , Citrus/crescimento & desenvolvimento , Endófitos/classificação , Endófitos/genética , Endófitos/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Filogenia , Pichia/classificação , Pichia/genética , Pichia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...