Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18541, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122873

RESUMO

Rock slope failures pose significant challenges in geotechnical engineering due to the intricate nature of rock masses, discontinuities, and various destabilizing factors during and after excavation. In mining industries, such as national cement factories, multi-benched excavation systems are commonly used for quarrying. However, cut slopes are often designed with steep angles to maximize economic benefits, inadvertently neglecting critical slope stability issues. This oversight can lead to slope instability, endangering human lives and property. This study focuses on analyzing the stability of existing quarry cut slopes, estimating their final depth, and conducting a parametric study of geometric profiles including bench height, width, face angle, and rump width. Kinematic analysis helps identify potential failure modes. The results reveal that the existing quarry cut slope is prone to toppling, wedge failure, and planar failure with probabilities of 42.68%, 19.53%, and 14.23%, respectively. Numerical modeling using the finite element method (Phase2 8.0 software) was performed under both static and dynamic loading conditions. The shear reduction factor (SRF) of the existing quarry cut slope was 1.01 under static loading and 0.86 under dynamic loading. Similarly, for the estimated depth, the SRF was 0.82 under static loading and 0.7 under dynamic loading. These values indicate that the slope stability falls significantly below the minimum acceptable SRF, rendering it unstable. The parametric study highlights the face angle of the bench as the most influential parameter in slope stability. By adjusting the bench face angle from 90° to 75°, 70°, and 65°, the SRF increased by 31.6%, 35.4%, and 37.9%, respectively. Among these, a 70° bench face angle is recommended for optimal stability with a SRF of 1.27 under static loading and 1.18 under dynamic loading.

2.
Sci Rep ; 14(1): 7964, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575631

RESUMO

Undertakings in underground mining are often complicated, particularly in situations where geotechnical conditions are not favorable. This study investigates the collapse of tunnels at the Lega-Dembi gold mine in Southern Ethiopia, an area characterized by weak talc formations. The persistent deformation of tunnels poses a threat to the safety of workers and mining operations. In this study, a numerical method that combines continuum and discontinuum approaches is employed to analyze tunnel failures. Additionally, the study evaluates the effect of geotechnical parameters on tunnel deformation, considering various support systems. The results indicate that a combination of rock bolts and shotcrete is effective in mitigating tunnel deformation. Furthermore, the study identifies the geological strength index and unconfined compressive strength as the most influential parameters on tunnel deformation. The findings also suggest appropriate support systems for managing underground instability and enhancing safety measures in weak geological formations.

3.
Sci Rep ; 13(1): 15875, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741917

RESUMO

Foundation plays a vital role in weight transfer from the superstructure to substructure. However, foundation characteristics such as pile group, piled raft, and footing remain unfolded due to their highly non-linear behaviour in different soil types. Bibliography analysis using VOSvierwer algorithm supported the significance of the research. Hence, this study investigates the load-bearing capacity of different types of foundations, including footings, pile groups, and piled rafts, by analyzing experimental data using finite element tools such as PLAXIS 2D and GEO5. The analysis involves examining the impact of various factors such as the influence of surcharge and the effect of different soil types on the load-bearing capabilities of the different types of foundation. For footing, parametric investigations using PLAXIS 2D are conducted to explore deformational changes. Pile groups are analyzed using GEO5 to assess their factor of safety (FOS.) and settling under various criteria, such as pile length and soil type. The study also provides insight into selecting the right type of foundation for civil engineering practice. Findings showed that different soil types have varying deformational behaviours under high loads with sandy soil having less horizontal deformation than clayey soil. Also, it was observed that increasing the pile thickness by 50% resulted in a reduction of 13.88% in settlement and an improvement of 16.66% in the FOS. In conclusion, this study highlights the importance of professionalism, exceptional talent, and outstanding decision-making when assessing the load-bearing capabilities of various foundation types for building structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA