Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NanoImpact ; 23: 100335, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35559836

RESUMO

Moving towards safe and sustainable innovations is an international policy ambition. In the on-hand manuscript, a concept combining safe by design and sustainability was implemented through the integration of human and environmental risk assessment, life cycle assessment as well as an assessment of the economic viability. The result is a nested and iterative process in form of a decision tree that integrates these three elements in order to achieve sustainable, safe and competitive materials, products or services. This approach, embedded into the stage-gate-model for safe by design, allows to reduce the uncertainty related to the assessment of risks and impacts by improving the quality of the data collected along each stage. In the second part of the manuscript, the application is shown for a case study dealing with the application of nanoparticles for Li-Ion batteries. One of the general conclusions out of this case study is that data gaps are a key aspect in view of the reliability of the results.


Assuntos
Nanoestruturas , Animais , Humanos , Estágios do Ciclo de Vida , Reprodutibilidade dos Testes , Medição de Risco/métodos , Fatores Socioeconômicos
2.
Sci Total Environ ; 668: 13-24, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30851679

RESUMO

Poor air quality is a leading contributor to the global disease burden and total number of deaths worldwide. Humans spend most of their time in built environments where the majority of the inhalation exposure occurs. Indoor Air Quality (IAQ) is challenged by outdoor air pollution entering indoors through ventilation and infiltration and by indoor emission sources. The aim of this study was to understand the current knowledge level and gaps regarding effective approaches to improve IAQ. Emission regulations currently focus on outdoor emissions, whereas quantitative understanding of emissions from indoor sources is generally lacking. Therefore, specific indoor sources need to be identified, characterized, and quantified according to their environmental and human health impact. The emission sources should be stored in terms of relevant metrics and statistics in an easily accessible format that is applicable for source specific exposure assessment by using mathematical mass balance modelings. This forms a foundation for comprehensive risk assessment and efficient interventions. For such a general exposure assessment model we need 1) systematic methods for indoor aerosol emission source assessment, 2) source emission documentation in terms of relevant a) aerosol metrics and b) biological metrics, 3) default model parameterization for predictive exposure modeling, 4) other needs related to aerosol characterization techniques and modeling methods. Such a general exposure assessment model can be applicable for private, public, and occupational indoor exposure assessment, making it a valuable tool for public health professionals, product safety designers, industrial hygienists, building scientists, and environmental consultants working in the field of IAQ and health.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental , Exposição por Inalação/estatística & dados numéricos , Aerossóis , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental , Humanos , Modelos Teóricos , Material Particulado , Medição de Risco
3.
Ann Work Expo Health ; 62(6): 639-662, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29931230

RESUMO

Background: Establishing the routes of exposure is a fundamental component of the risk assessment process for every dangerous substance. The present study systematically reviews the available literature to assess the relevance of the different routes and forms of exposure that are of concern for the protection of workers during the manufacture, handling, or end-use of engineered nanomaterials (ENMs). Methods: A systematic review of the peer-reviewed literature published between 2000 and 2015 was completed. Only studies including measurements of inhalation or dermal exposure were selected and used to identify the exposure situations for which the measurements were collected. The identified exposure situations were grouped based on the type of ENM (i.e. carbon nanotubes and fibres, silicon-based, titanium dioxide, other metal oxides, pure elemental metals, and other ENMs) and activity involved. The grouped exposure situations were assessed to provide a conclusion regarding the likelihood, form, and route of exposure. Assessment of the likelihood of exposure was based on well-defined criteria using a previously established decision logic for inhalation exposure and the outputs from measurements and/or conceptual models for dermal/ingestion exposure. For each combination of nano-activity and type of ENM, the aggregated likelihood across all relevant individual assessments was used to draw conclusions about the relevance of both the inhalation and dermal/ingestion routes. Based on the quality of the data, the strength of the evidence was also evaluated. Results: One hundred and seven studies were identified during the review process, reporting 424 individual exposure assessments. Measurement data were limited for dermal/ingestion exposure and for inhalation exposure for downstream use and end-of-life. However, the data provided high-quality evidence that in occupational settings all three routes can be of relevance for exposure to ENMs. In general, whenever inhalation exposure occurs then dermal and inadvertent ingestion exposure may occur due to surface deposition and transfer due to the ENMs release. However, for some forms of exposure (e.g. suspension/liquids), dermal exposure can occur even when inhalation exposure is unlikely. An increased likelihood of exposure was observed for manual activities such as cleaning and maintenance, collection/harvesting, spraying, and finishing as well as those involving feeding into a process and handling of powders outside enclosures. The likelihood of exposure was affected by the presence of risk management measures and the scale of the production involved. Conclusion: This literature review provides evidence that for ENMs, as found for other materials, the likelihood of the exposure depends largely on the physical form of the substance as well as the applied process and operational conditions. These results can be used to provide first indications of the likelihood of exposure and guidance for exposure controls in workplaces. However, there is a clear lack of high-quality exposure data, in particular for downstream use and end-of-life scenarios and in low- and medium-income countries.


Assuntos
Exposição por Inalação/análise , Nanoestruturas , Exposição Ocupacional/análise , Humanos , Modelos Teóricos , Nanotubos de Carbono , Medição de Risco/métodos , Local de Trabalho
4.
Artigo em Inglês | MEDLINE | ID: mdl-29048395

RESUMO

An Environmental Risk Assessment (ERA) for nanomaterials (NMs) is outlined in this paper. Contrary to other recent papers on the subject, the main data requirements, models and advancement within each of the four risk assessment domains are described, i.e., in the: (i) materials, (ii) release, fate and exposure, (iii) hazard and (iv) risk characterisation domains. The material, which is obviously the foundation for any risk assessment, should be described according to the legislatively required characterisation data. Characterisation data will also be used at various levels within the ERA, e.g., exposure modelling. The release, fate and exposure data and models cover the input for environmental distribution models in order to identify the potential (PES) and relevant exposure scenarios (RES) and, subsequently, the possible release routes, both with regard to which compartment(s) NMs are distributed in line with the factors determining the fate within environmental compartment. The initial outcome in the risk characterisation will be a generic Predicted Environmental Concentration (PEC), but a refined PEC can be obtained by applying specific exposure models for relevant media. The hazard information covers a variety of representative, relevant and reliable organisms and/or functions, relevant for the RES and enabling a hazard characterisation. The initial outcome will be hazard characterisation in test systems allowing estimating a Predicted No-Effect concentration (PNEC), either based on uncertainty factors or on a NM adapted version of the Species Sensitivity Distributions approach. The risk characterisation will either be based on a deterministic risk ratio approach (i.e., PEC/PNEC) or an overlay of probability distributions, i.e., exposure and hazard distributions, using the nano relevant models.


Assuntos
Exposição Ambiental/análise , Poluentes Ambientais/efeitos adversos , Nanoestruturas/efeitos adversos , Medição de Risco/métodos , Humanos
5.
Adv Exp Med Biol ; 947: 27-40, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28168664

RESUMO

Human exposure assessment of engineered nanomaterials (ENMs) is hampered, among other factors, by the difficulty to differentiate ENM from other nanomaterials (incidental to processes or naturally occurring) and the lack of a single metric that can be used for health risk assessment. It is important that the exposure assessment is carried out throughout the entire life-cycle as releases can occur at the different stages of the product life-cycle, from the synthesis, manufacture of the nano-enable product (occupational exposure) to the professional and consumer use of nano-enabled product (consumer exposure) and at the end of life.Occupational exposure surveys should follow a tiered approach, increasing in complexity in terms of instruments used and sampling strategy applied with higher tiers in order tailor the exposure assessment to the specific materials used and workplace exposure scenarios and to reduce uncertainty in assessment of exposure. Assessment of consumer exposure and of releases from end-of-life processes currently relies on release testing of nano-enabled products in laboratory settings.


Assuntos
Nanoestruturas/efeitos adversos , Poluentes Ambientais/efeitos adversos , Humanos , Exposição Ocupacional/efeitos adversos , Medição de Risco
6.
J Hazard Mater ; 322(Pt A): 17-28, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27181990

RESUMO

For exposure and risk assessment in occupational settings involving engineered nanomaterials (ENMs), it is important to understand the mechanisms of release and how they are influenced by the ENM, the matrix material, and process characteristics. This review summarizes studies providing ENM release information in occupational settings, during different industrial activities and using various nanomaterials. It also assesses the contextual information - such as the amounts of materials handled, protective measures, and measurement strategies - to understand which release scenarios can result in exposure. High-energy processes such as synthesis, spraying, and machining were associated with the release of large numbers of predominantly small-sized particles. Low-energy processes, including laboratory handling, cleaning, and industrial bagging activities, usually resulted in slight or moderate releases of relatively large agglomerates. The present analysis suggests that process-based release potential can be ranked, thus helping to prioritize release assessments, which is useful for tiered exposure assessment approaches and for guiding the implementation of workplace safety strategies. The contextual information provided in the literature was often insufficient to directly link release to exposure. The studies that did allow an analysis suggested that significant worker exposure might mainly occur when engineering safeguards and personal protection strategies were not carried out as recommended.


Assuntos
Poluentes Ocupacionais do Ar/análise , Nanoestruturas/química , Exposição Ocupacional/análise , Humanos , Indústrias , Medição de Risco , Local de Trabalho
7.
Int J Environ Res Public Health ; 12(10): 13415-34, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26516872

RESUMO

Physicochemical properties of chemicals affect their exposure, toxicokinetics/fate and hazard, and for nanomaterials, the variation of these properties results in a wide variety of materials with potentially different risks. To limit the amount of testing for risk assessment, the information gathering process for nanomaterials needs to be efficient. At the same time, sufficient information to assess the safety of human health and the environment should be available for each nanomaterial. Grouping and read-across approaches can be utilised to meet these goals. This article presents different possible applications of grouping and read-across for nanomaterials within the broader perspective of the MARINA Risk Assessment Strategy (RAS), as developed in the EU FP7 project MARINA. Firstly, nanomaterials can be grouped based on limited variation in physicochemical properties to subsequently design an efficient testing strategy that covers the entire group. Secondly, knowledge about exposure, toxicokinetics/fate or hazard, for example via properties such as dissolution rate, aspect ratio, chemical (non-)activity, can be used to organise similar materials in generic groups to frame issues that need further attention, or potentially to read-across. Thirdly, when data related to specific endpoints is required, read-across can be considered, using data from a source material for the target nanomaterial. Read-across could be based on a scientifically sound justification that exposure, distribution to the target (fate/toxicokinetics) and hazard of the target material are similar to, or less than, the source material. These grouping and read-across approaches pave the way for better use of available information on nanomaterials and are flexible enough to allow future adaptations related to scientific developments.


Assuntos
Nanoestruturas/toxicidade , Meio Ambiente , Humanos , Medição de Risco/métodos , Segurança
8.
Ann Occup Hyg ; 58(5): 591-600, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24598941

RESUMO

Dermal exposure to drilling fluids and crude oil is an exposure route of concern. However, there have been no published studies describing sampling methods or reporting dermal exposure measurements. We describe a study that aimed to evaluate a wipe sampling method to assess dermal exposure to an oil-based drilling fluid and crude oil, as well as to investigate the feasibility of using an interception cotton glove sampler for exposure on the hands/wrists. A direct comparison of the wipe and interception methods was also completed using pigs' trotters as a surrogate for human skin and a direct surface contact exposure scenario. Overall, acceptable recovery and sampling efficiencies were reported for both methods, and both methods had satisfactory storage stability at 1 and 7 days, although there appeared to be some loss over 14 days. The methods' comparison study revealed significantly higher removal of both fluids from the metal surface with the glove samples compared with the wipe samples (on average 2.5 times higher). Both evaluated sampling methods were found to be suitable for assessing dermal exposure to oil-based drilling fluids and crude oil; however, the comparison study clearly illustrates that glove samplers may overestimate the amount of fluid transferred to the skin. Further comparison of the two dermal sampling methods using additional exposure situations such as immersion or deposition, as well as a field evaluation, is warranted to confirm their appropriateness and suitability in the working environment.


Assuntos
Monitoramento Ambiental/métodos , Indústrias Extrativas e de Processamento , Óleos Industriais/análise , Exposição Ocupacional/análise , Petróleo/análise , Pele/química , Análise de Variância , Animais , Óleos Combustíveis/análise , Humanos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...