Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 223: 396-402, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29940516

RESUMO

Acequias are historical community-operated water channels used for irrigating of traditional farming areas (vegas). They have been traditionally managed by local inhabitants, either by clearing weeds or by burning them in winter, in order to keep the channels clean of vegetation, thus avoiding their clogging. The impact of these cultural practices on vegetation has not still been studied. The aim of this paper is to show how traditional management influences floristic biodiversity in a traditional acequia in the vega of Granada (SE Spain). The acequia was treated following the traditional methodology used by farmers, being divided into areas that were burned, cleared, or left unchanged as control (January 2016). Afterwards, we collected soil samples and analyzed them in the lab to determine the treatment effects on soil properties. Vegetation was monitored in late spring 2016 in order to detect differences between treatments. Traditional management increased plant diversity, this effect being much more patent for the burning than for clearing treatment. Soil analyses revealed only slight differences in pH and CaCO3 content, higher for the burning treatment. The increase in plant diversity found in areas treated by traditional management was due mainly to the reduction of competition, which promoted the emergence or increase of populations of non-dominant species. The results indicated that traditional management not only offers advantages to the farmers but also promotes plant diversity and ecosystem services.


Assuntos
Biodiversidade , Plantas , Ecossistema , Solo , Espanha
2.
J Environ Manage ; 169: 174-83, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26748384

RESUMO

Monthly litterfall was monitored over a 3-year period in afforested Aleppo pines in the Mediterranean semiarid SE Spain with the aim of determining the long-term response of pines to reductions in tree competition and how this forest practice might influence stand resilience. Three thinning intensities applied 5 years earlier were evaluated (T75 = 75% of the basal area removed, T60 = 60% and T48 = 48%), both at the stand and at the tree level. On average, the total annual litterfall varied between 1.30 Mg ha(-1) yr(-1) (±0.24 SE) in T75 and 3.28 Mg ha(-1) yr(-1) (±0.78 SE) in the unthinned control. At the stand level, monthly differences among the treatments were found over time in the needles (F = 11.09, df = 3, P = 0.0009) and woody fraction (F = 4.36, df = 3, P = 0.0269) following the thinning gradient: T0 (control)>T48 > T60 > T75, and for the total amount of needles (χ(2) = 9.33, P = 0.025) and twigs (χ(2) = 9.11, P = 0.027) recorded at the end of the study period. High amounts of twig and needle fall were recorded during summer and beginning of autumn, whereas the main miscellanea inputs were registered during the spring, coinciding with the fall of nests and frass from caterpillar outbreaks. At the tree level, the total litterfall fluctuated between 1.5 kg tree yr(-1) in T0 (2nd yr) and 7.0 kg tree yr(-1) in T75 (3rd yr), although mean annual statistical differences among the treatments were found only for the first year of monitoring. However, needle fall was higher for larger pines (T75) than for the smaller ones in control (T0) when the data were analysed over the 3-year-period (F = 3.64, df = 3, P = 0.0247), and the same happened for the woody fraction (F = 3.63, df = 3, P = 0.0250). By contrast, pine trees in the unthinned control registered needle-fall rates (measured as kg m(-2) tree(-1)) that were similar to or higher than those of pine trees in thinned stands, suggesting that defoliation processes took place at high tree densities, especially after a severely dry period. We propose thinning as a measure to adapt high-density plantations to alterations due to climate change, in order to prevent forest decline and mortality.


Assuntos
Agricultura Florestal/métodos , Pinus/fisiologia , Mudança Climática , Ecossistema , Monitoramento Ambiental , Estações do Ano , Espanha , Fatores de Tempo , Madeira
3.
J Environ Manage ; 163: 109-14, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26301687

RESUMO

Gypsum habitats are widespread globally and are important for biological conservation. Nevertheless, they are often affected by human disturbances and thus require restoration. Sowing and planting have shown positive results, but these actions are usually limited by the lack of native plant material in commercial nurseries, and very little information is available on the propagation of these species. We address this issue from the hypothesis that gypsum added to a standard nursery growing medium (peat) can improve seedling performance of gypsum species and, therefore, optimise the seedling production for outplanting purposes. We test the effect of gypsum on emergence, survival, and growth of nine native plant species, including gypsophiles (exclusive to gypsum) and gypsovags (non-exclusive to gypsum). We used four treatments according to the proportions, in weight, of gypsum:standard peat (G:S), i.e. high-g (50G:50S), medium-g (25G:75S), low-g (10G:90S), and standard-p (0G:100S). Our results showed that the gypsum treatments especially benefited the emergence stage, gypsophiles as group, and Ononis tridentata as a taxon. In particular, the gypsum treatments enhanced emergence of seven species, survival of three species, and growth of two gypsophiles, while the use of the standard peat favoured only the emergence or growth of three gypsovags. Improving emergence and survival at the nursery can provide a reduction of costs associated with seed harvesting, watering, and space, while enlarging seedlings can favour the establishment of individuals after outplanting. Thus, we suggest adding gypsum to standard peat for propagating seedlings in species from gypsum habitats, thereby potentially cutting the costs of restoring such habitats. Our assessment enables us to provide particular advice by species. In general, we recommend using between 25 and 50% of gypsum to propagate gypsophiles, and between 0 and 10% for gypsovags. The results can benefit not only the production of widely distributed species commonly affected by gypsum quarrying, but also of narrow and threatened endemic species that require particularly efficient use of their seeds. In addition, our study highlights the importance of using appropriate growing media to propagate plants characteristic of special substrates for restoration purposes.


Assuntos
Ecossistema , Plântula/crescimento & desenvolvimento , Biodegradação Ambiental , Sulfato de Cálcio/economia , Ononis/crescimento & desenvolvimento , Desenvolvimento Vegetal , Sementes , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...