Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(38): 7782-7790, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37705355

RESUMO

Surface-modified PAMAM dendrimers have important applications in drug delivery, yet a gap remains about the role that surface functionalization plays on their cell internalization capacity. We examined the cell internalization kinetics of PAMAM dendrimers that were surface-modified with acetyl, folate and poly(ethylene glycol), as model functional groups differing in size, charge, and chemical functionality. Dendrimers with 25% functionalization were internalized by HEK cells, but with slower rates and lower maximum uptakes than the native dendrimer between 1-6 h of incubation. Dendrimers with 50% functionalization exhibited negligible internalization capacities at all incubation times. Molecular dynamics simulations revealed that the solvent accessibility of the cationic surface charges is a key factor affecting cell internalization, unlike the total charge, functionality or size of surface-modified PAMAM dendrimers. These findings provide valuable insights to assist the design of PAMAM-based systems for drug delivery applications.


Assuntos
Dendrímeros , Dendrímeros/química , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/química , Solventes
2.
J Med Chem ; 66(18): 12715-12716, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37721863

RESUMO

Dipeptidyl peptidase-like protein 9 (DPP9) is emerging as a promising drug target for the treatment of hematological diseases. Two novel DPP9 inhibitors with nanomolar affinity and unprecedented selectivity to DPP9 over DPP8 have been discovered, paving the way for future progress in DPP9-mediated treatments.


Assuntos
Dipeptidil Peptidase 4 , Dipeptidil Peptidases e Tripeptidil Peptidases , Dipeptidil Peptidase 4/metabolismo
3.
J Chem Inf Model ; 63(4): 1338-1350, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36757339

RESUMO

Vildagliptin (VIL) is an antidiabetic drug that inhibits dipeptidyl peptidase-4 (DPP4) through a covalent mechanism. The molecular bases for this inhibitory process have been addressed experimentally and computationally. Nevertheless, relevant issues remain unknown such as the roles of active site protonation states and conserved water molecules nearby the catalytic center. In this work, molecular dynamics simulations were applied to examine the structures of 12 noncovalent VIL-DPP4 complexes encompassing all possible protonation states of three noncatalytic residues (His126, Asp663, Asp709) that were inconclusively predicted by different computational tools. A catalytically competent complex structure was only achieved in the system with His126 in its ε-form and nonconventional neutral states for Asp663/Asp709. This complex suggested the involvement of one water molecule in the catalytic process of His740/Ser630 activation, which was confirmed by QM/MM simulations. Our findings support the suitability of a novel water-mediated mechanism in which His740/Ser630 activation occurs concertedly with the nucleophilic attack on VIL and the imidate protonation by Tyr547. Then, the restoration of His740/ Tyr547 protonation states occurs via a two-water hydrogen bonding network in a low-barrier process, thus describing the final step of the catalytic cycle for the first time. Additionally, two hydrolytic mechanisms were proposed based on the hydrogen bonding networks formed by water molecules and the catalytic residues along the inhibitory mechanism. These findings are valuable to unveil the molecular features of the covalent inhibition of DPP4 by VIL and support the future development of novel derivatives with improved structural or mechanistic profiles.


Assuntos
Dipeptidil Peptidase 4 , Água , Vildagliptina , Domínio Catalítico , Água/química , Simulação de Dinâmica Molecular
4.
Analyst ; 148(2): 305-315, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36541436

RESUMO

Microcystins (MCs) are highly toxic peptides produced by cyanobacteria during algal blooms. Microcystin-leucine-arginine (MC-LR) is the most toxic and common MC variant with major effects on human and animal health upon exposure. MC-LR detection has become critical to ensure water safety, therefore robust and reliable analytical methods are needed. This work reports the development of a simple and optimized Molecularly Imprinted Nanoparticle-Based Assay (MINA) for MC-LR detection in water. Molecularly Imprinted Nanoparticles (MINs) were prepared by solid-phase polymerization on glass beads conjugated to MC-LR through (3-aminopropyl) triethoxysilane (APTES) via amide bonding. APTES-modified glass beads were obtained under optimized conditions to maximize the density of surface amino groups available for MC-LR conjugation. Two quinary mixtures of acrylic monomers differing in charge, polarity, and functionality were selected from molecular docking calculations and used to obtain MINs for MC-LR recognition using N,N'-methylene-bis-acrylamide (BIS) as the crosslinking agent. MINs were immobilized by physical adsorption onto 96-well polystyrene microplate and evaluated as per their rebinding capacity toward the analyte by using a covalent conjugate between MC-LR and the enzyme horseradish peroxidase (HRP). Experimental conditions for the MINs immobilization protocol, HRP-MC-LR concentration, and composition of the blocking solution were set to maximize the colorimetric response of the MINs compared to non-treated wells. Optimized conditions were then applied to conduct competitive MINAs with the HRP-MC-LR conjugate and the free analyte, which confirmed the preferential binding of MC-LR to the immobilized MINs for analyte concentrations ranging from 1 × 10-5 nmol L-1 to 100 nmol L-1. The best competitive MINA showed a limit of detection of 2.49 × 10-4 nmol L-1 and coefficients of variation less than 10% (n = 6), which are auspicious for the use of MINs as analytical tools for MC-LR detection below the permissible limits issued by WHO for safe water consumption (1.00 nmol L-1). This assay also proved to be selective to the analyte in cross-reactivity studies with two analogous microcystins (MC-RR and MC-YR). Analyses of lagoon and drinking water samples enriched with MC-LR revealed strong matrix effects that reduce the MINA response to the analyte, thus suggesting the need for sample pretreatment methods in future development in this subject.


Assuntos
Água Potável , Microcistinas , Água Potável/análise , Toxinas Marinhas , Microcistinas/análise , Simulação de Acoplamento Molecular
5.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361785

RESUMO

Fungal biotransformation is an attractive synthetic strategy to produce highly specific compounds with chemical functionality in regions of the carbon skeleton that are not easily activated by conventional organic chemistry methods. In this work, Cladosporium antarcticum isolated from sediments of Glacier Collins in Antarctica was used to obtain novel drimane sesquiterpenoids alcohols with activity against Candida yeast from drimendiol and epidrimendiol. These compounds were produced by the high-yield reduction of polygodial and isotadeonal with NaBH4 in methanol. Cladosporium antarcticum produced two major products from drimendiol, identified as 9α-hydroxydrimendiol (1, 41.4 mg, 19.4% yield) and 3ß-hydroxydrimendiol (2, 74.8 mg, 35% yield), whereas the biotransformation of epidrimendiol yielded only one product, 9ß-hydroxyepidrimendiol (3, 86.6 mg, 41.6% yield). The products were purified by column chromatography and their structure elucidated by NMR and MS. The antifungal activity of compounds 1-3 was analyzed against Candida albicans, C. krusei and C. parapsilosis, showing that compound 2 has a MIC lower than 15 µg/mL against the three-pathogenic yeast. In silico studies suggest that a possible mechanism of action for the novel compounds is the inhibition of the enzyme lanosterol 14α-demethylase, affecting the ergosterol synthesis.


Assuntos
Álcoois , Sesquiterpenos , Álcoois/metabolismo , Candida , Antifúngicos/química , Sesquiterpenos/química , Candida albicans , Biotransformação , Testes de Sensibilidade Microbiana
6.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233069

RESUMO

Drimys winteri J.R. (Winteraceae) produce drimane sesquiterpenoids with activity against Candida yeast. In this work, drimenol, polygodial (1), isotadeonal (2), and a new drimane α,ß-unsaturated 1,4-dialdehyde, named winterdial (4), were purified from barks of D. winteri. The oxidation of drimenol produced the monoaldehyde drimenal (3). These four aldehyde sesquiterpenoids were evaluated against six Candida species isolated from candidemia patients in Chilean hospitals. Results showed that 1 displays fungistatic activity against all yeasts (3.75 to 15.0 µg/mL), but irritant effects on eyes and skin, whereas its non-pungent epimer 2 has fungistatic and fungicide activities at 1.9 and 15.0 µg/mL, respectively. On the other hand, compounds 3 and 4 were less active. Molecular dynamics simulations suggested that compounds 1-4 are capable of binding to the catalytic pocket of lanosterol 14-alpha demethylase with similar binding free energies, thus suggesting a potential mechanism of action through the inhibition of ergosterol synthesis. According to our findings, compound 2 appears as a valuable molecular scaffold to pursue the future development of more potent drugs against candidiasis with fewer side effects than polygodial. These outcomes are significant to broaden the alternatives to treat fungal infections with increasing prevalence worldwide using natural compounds as a primary source for active compounds.


Assuntos
Candidemia , Fungicidas Industriais , Sesquiterpenos , Aldeídos/farmacologia , Candida , Chile , Ergosterol , Humanos , Irritantes , Lanosterol , Sesquiterpenos Policíclicos , Sesquiterpenos/química
7.
J Chem Inf Model ; 62(24): 6844-6856, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36074453

RESUMO

Microtubule (MT) stabilization is an attractive pharmacological strategy to hamper the progress of neurodegenerative diseases. In this regard, seeking peptides with MT-stabilizing properties has awoken great interest. This work reports the rational discovery of two structurally related MT-stabilizing octapeptides using a combination of protein-peptide docking, conventional molecular dynamics, Gaussian accelerated molecular dynamics (GaMD), and tubulin polymerization assays. FASTA sequences for ∼1000 peptides were crafted from single and double mutants of davunetide (NAP) and docked against the Taxol (TX) site on an octameric MT model representing a portion of the MT wall. Docked peptides were rescored after MM minimization and binding free energy refinement through single-point MM/GBSA calculations. The 60 best-ranked peptides were subjected to 50 ns MD simulations on peptide-MT complexes at the terminal TX site in the octameric Tau-MT model resulting in 11 complexes with occupancies greater than 99% and peptide-protein binding free energies less than -40 kcal/mol. Selected peptides were then examined through 300 ns GaMD simulations in complexes containing two identical ligands at the terminal and intermediate TX sites in the Tau-MT model to account for the differential association of MT-binding peptides to different regions of the MT structure. Six candidates showed a favorable MT-binding potential based on the analysis of interaction frequencies and relative mobilities of the complex components, suggesting a pivotal role of Arg278, Gln281, and Arg369 residues for peptides recognition. Four candidates were predicted to preserve an adequate balance of longitudinal and lateral interactions between tubulin dimers in peptide-MT complexes such that MT-stabilizing effects could be expected. MT polymerization experiments confirmed that four peptides (HAPVSIHQ, NYPVSIHQ, NWPVSIWQ, HAPVSIIQ) exhibit MT-stabilizing activity in vitro with NWPVSIWQ (P43) and HAPVSIIQ (P52) being the most active. Tryptophan quenching assays verified that P43 and P52 bind to nonpolymeric tubulin, whereas viability experiments on HEK cells confirmed their safety to pursue future pharmacological studies. The results herein presented are valuable to making progress in the rational design of MT-stabilizing peptides.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Paclitaxel/análise , Paclitaxel/metabolismo , Ligação Proteica , Simulação de Dinâmica Molecular
9.
J Chem Inf Model ; 61(11): 5682-5691, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34730359

RESUMO

Preserving the integrity of neuronal microtubules (MTs) has emerged as a promising strategy to inhibit the progression of neurodegenerative disorders such as Alzheimer's disease. Such a goal could be achieved by peptides that mimic the functional role of Tau, an MT-associated protein that stabilizes MTs by dynamically binding to their outer surface. This work examines the binding properties and MT-stabilizing potential of a 27-amino acid Tau oligopeptide from 300 ns Gaussian-accelerated molecular dynamics simulations and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculations on octameric MT models bound to two equivalent and independent Tau peptides. Bound peptides adopted extended conformations that are highly consistent with cryo-electron microscopy reports for full-length Tau bound to MTs. Anchoring points in three consecutive tubulin subunits were identified, with a relevant contribution of the Ser419-Val435 region to α-tubulin. Tau peptides strengthen the longitudinal protein-protein contacts within the MT lattice and exert a cooperative MT-stabilizing effect in MT complexes simultaneously bonded to taxol or peloruside A. Ser phosphorylation results in a larger peptide mobility, altered interaction profiles, and MT destabilization, which are in line with the loss of MT integrity resulting from the post-translational hyperphosphorylation of Tau. Our results shed light on the MT-stabilizing potential of Tau-mimetic peptides to act as novel neuroprotective agents targeting MTs.


Assuntos
Microtúbulos , Tubulina (Proteína) , Microscopia Crioeletrônica , Oligopeptídeos , Paclitaxel/farmacologia
10.
J Chem Inf Model ; 61(5): 2463-2474, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33929203

RESUMO

E-selectin is a cell-adhesion receptor with specific recognition capacity toward sialo-fucosylated Lewis carbohydrates present in leukocytes and tumor cells. E-selectin interactions mediate the progress of inflammatory processes and tumor metastasis, which aroused the interest in using this protein as a biomolecular target to design glycomimetic inhibitors for active targeting or therapeutic purposes. In this work, we report the rational discovery of two novel glycomimetic peptides targeting E-selectin based on mutations of the reference selectin-binding peptide IELLQAR. Sixteen single or double mutants at Ile1, Leu3, Leu4, and Arg7 residues were evaluated as potential candidates for E-selectin targeting using 50 ns molecular dynamics (MD) simulations. Nine peptides showing a stable association with the functional pocket were modified by adding a cysteine residue to the N-terminus to confer versatility for further chemical conjugation. Subsequent 50 ns MD simulations resulted in five cysteine-modified peptides with retained or improved E-selectin binding potential. Then, 300 ns accelerated MD (aMD) simulations were used to examine the binding properties of the best five cysteine-modified peptides. CIEELQAR and CIELFQAR exhibit the most selective association with the functional pocket of E-selectin, as revealed by potential of mean force profiles. Microscale thermophoresis experiments confirmed the E-selectin binding capacity of the selected peptides with KD values in the low micromolar range (CIEELQAR KD = 35.0 ± 1.4 µM; CIELFQAR KD = 16.4 ± 0.7 µM), which are 25-fold lower than the reported value for the native ligand sLex (KD = 878 µM). Our findings support the potential of CIEELQAR and CIELFQAR as novel E-selectin-targeting peptides with high recognition capacity and versatility for chemical conjugation, which are critical for enabling future applications in active targeting.


Assuntos
Selectina E , Peptídeos , Adesão Celular , Ligantes , Antígeno Sialil Lewis X
11.
J Chem Inf Model ; 61(4): 2048-2061, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33784106

RESUMO

Nanoscale molecularly imprinted polymers (nanoMIPs) are powerful molecular recognition tools with broad applications in the diagnosis, prognosis, and treatment of complex diseases. In this work, fully atomistic molecular dynamics (MD) simulations are used to assist the design of nanoMIPs with recognition capacity toward l-fucose and d-mannose as prototype disease biomarkers. MD simulations were conducted on prepolymerization mixtures containing different molar ratios of the monomers N-isopropylacrylamide (NIPAM), methacrylamide (MAM), and (4-acrylamidophenyl)(amino)methaniminium acetate (AB) and fixed molar ratios of the cross-linker ethylene glycol dimethacrylate (EGDMA) in explicit acetonitrile as the porogenic solvent. Prepolymerization mixtures containing ternary mixtures of NIPAM (50%), MAM (25%), and AB (25%) exhibit the best imprinting potential for both l-fucose and d-mannose, as they maximize (i) the stability of template-monomer plus template-cross-linker interactions, (ii) the number of functional monomers plus cross-linkers organized around the template, and (iii) the number of hydrogen bonds participating in template recognition. The studied prepolymerization mixtures exhibit an overall increased recognition capacity toward d-mannose over l-fucose, which is attributed to the higher hydrogen-bonding capacity of the former template. Our results are valuable to guide the synthesis of efficient nanoMIPs for sugar recognition and provide a computational framework extensible to any other template, monomer, or cross-linker combination, thus constituting a promising strategy for the rational design of molecularly imprinted materials.


Assuntos
Impressão Molecular , Fucose , Manose , Simulação de Dinâmica Molecular , Polímeros
12.
J Chem Inf Model ; 60(12): 6634-6641, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33259207

RESUMO

Blocking the interaction between the Gßγ protein and the glycine receptor (GlyR) has emerged as a promising pharmacological strategy to treat acute alcohol intoxication by inhibiting ethanol potentiation on GlyR. M554 is a recently discovered small molecule capable of binding to Gßγ with potent in vitro and in vivo inhibitory activity. This compound has been tested as a mixture of diastereomers, and no information is available concerning the stereospecific activity of each species, which is critical to pursue efforts on lead optimization and drug development. In this work, we explored the differential activity of four M554 stereoisomers by in silico molecular dynamics simulations and electrophysiological experiments. Our results revealed that the (R,R)-M554 stereoisomer is a promising lead compound that inhibits ethanol potentiation of GlyR.


Assuntos
Etanol , Receptores de Glicina , Estereoisomerismo
13.
Nanomedicine (Lond) ; 15(28): 2771-2784, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33073670

RESUMO

The purpose of this study was to design a polyamidoamine (PAMAM)-based nanovector for the efficient delivery of methotrexate to U87 glioma cells. To this end, 0-100% acetylated PAMAM dendrimers of the fourth generation were synthesized and evaluated using drug encapsulation measurements, molecular dynamics simulations, neurotoxicity assays and neuronal internalization experiments. The best system was tested as a nanovector for methotrexate delivery to U87 glioma cells. The authors found that 25% acetylated PAMAM dendrimers of the fourth-generation combine low intrinsic toxicity, large drug complexation capacity and efficient internalization into hippocampal neurons. Nanovector complexation enhances the cytotoxic response of methotrexate against U87 glioma cells compared with free drug solutions. In conclusion, 25% acetylated PAMAM dendrimers of the fourth-generation increase drug uptake by glioma cells and thereby act as efficient nanovectors for methotrexate delivery.


Assuntos
Dendrímeros , Glioma , Dendrímeros/uso terapêutico , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Humanos , Metotrexato/uso terapêutico , Poliaminas
14.
Biomolecules ; 10(8)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722158

RESUMO

Candida species cause an opportunistic yeast infection called Candidiasis, which is responsible for more than 50,000 deaths every year around the world. Effective treatments against candidiasis caused by non-albicans Candida species such as C. glabrata, C. parapsilosis, C. aureus, and C.krusei are limited due to severe resistance to conventional antifungal drugs. Natural drimane sesquiterpenoids have shown promising antifungal properties against Candida yeast and have emerged as valuable candidates for developing new candidiasis therapies. In this work, we isolated isodrimeninol (C1) from barks of Drimys winteri and used it as starting material for the hemi-synthesis of four sesquiterpenoids by oxidation with pyridinium chlorochromate (PCC). The structure of the products (C2, C3, C4, and C5) was elucidated by 1D and 2D NMR spectroscopy resulting in C4 being a novel compound. Antifungal activity assays against C. albicans, C. glabrata, and C. krusei revealed that C4 exhibited an increased activity (IC50 of 75 µg/mL) compared to C1 (IC50 of 125 µg/mL) in all yeast strains. The antifungal activity of C1 and C4 was rationalized in terms of their capability to inhibit lanosterol 14-alpha demethylase using molecular docking, molecular dynamics simulations, and MM/GBSA binding free energy calculations. In silico analysis revealed that C1 and C4 bind to the outermost region of the catalytic site of 14-alpha demethylase and block the entrance of lanosterol (LAN) to the catalytic pocket. Binding free energy estimates suggested that C4 forms a more stable complex with the enzyme than C1, in agreement with the experimental evidence. Based on this new approach it is possible to design new drimane-type sesquiterpenoids for the control of Candida species as inhibitors of 14-alpha demethylase.


Assuntos
Inibidores de 14-alfa Desmetilase/química , Candida/crescimento & desenvolvimento , Sesquiterpenos Policíclicos/química , Compostos de Piridínio/química , Sesquiterpenos/química , Esterol 14-Desmetilase/química , Inibidores de 14-alfa Desmetilase/síntese química , Inibidores de 14-alfa Desmetilase/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Candida/classificação , Candida/efeitos dos fármacos , Domínio Catalítico , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxirredução , Sesquiterpenos Policíclicos/síntese química , Sesquiterpenos Policíclicos/farmacologia , Domínios Proteicos , Compostos de Piridínio/metabolismo , Sesquiterpenos/síntese química , Sesquiterpenos/farmacologia , Esterol 14-Desmetilase/metabolismo
15.
J Chem Inf Model ; 60(8): 4076-4084, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32687349

RESUMO

Plocabulin is a novel microtubule (MT) destabilizer agent with potent antineoplastic activity. This compound binds to the maytansine site at the longitudinal interface between tubulin dimers and exerts a hinge-like effect that disrupts normal microtubule assembly. Plocabulin has emerged as a valuable model for the rational design of novel MT destabilizers because of its unique structural and mechanistic features. To make progress on this matter, detailed molecular-level understanding of the ligand-protein interactions responsible for plocabulin association and the conformation and energetic effects arising from plocabulin binding on the longitudinal interaction between tubulin dimers must be provided. In this work, fully atomistic MD simulations and MM/GBSA binding free-energy calculations were used to examine the association of plocabulin to one or two tubulin dimers in longitudinal arrangement. Our results revealed that plocabulin binding is favored by the addition of a second tubulin dimer and that this ligand promotes the assembly of curved tetrameric arrangements with strengthened longitudinal interdimeric interactions compared to ligand-free systems. The applicability of these findings to the rational discovery of novel MT destabilizers was tested using MD and MM/GBSA calculations as filtering tools to narrow the results of virtual screening among an FDA-approved drug database. Our results confirmed that tight-binding ligands do not necessarily exert the expected conformational and energetic effects on longitudinal tubulin-tubulin interactions, which is a matter to consider in future design strategies.


Assuntos
Policetídeos , Tubulina (Proteína) , Microtúbulos , Pironas
16.
J Chem Inf Model ; 60(6): 3204-3213, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32286822

RESUMO

Microtubules (MT) are cytoskeletal polymers of αß-tubulin dimers that play a critical role in many cellular functions. Diverse antimitotic drugs bind to MT and disrupt their dynamics acting as MT stabilizing or destabilizing agents. The occurrence of undesired side effects and drug resistance encourages the search for novel MT binding agents with chemically diverse structures and different interaction profiles compared to known active compounds. This work reports the rational discovery of seven novel MT stabilizers using a combination of molecular modeling methods and in vitro experimental assays. Virtual screening, similarity filtering, and molecular mechanics generalized Born surface area (MM/GBSA) binding free energy refinement were employed to select seven potential candidates with high predicted affinity toward the non-taxoid site for MT stabilizers on ß-tubulin. MD simulations of 150 ns on reduced MT models suggest that candidate compounds strengthen the longitudinal interactions between tubulin dimers across protofilaments, which is a primary molecular mechanism of action for known MT stabilizers. In vitro MT polymerization assays confirmed that all candidates promote MT assembly at concentrations of >50 mM and exhibit noncompetitive MT polymerization profiles when cotreating with Taxol. Preliminary HeLa cell viability assays revealed a moderate cytotoxic effect for the compounds under study at 100 µM concentration. These results support the validity of our rational discovery strategy and the use of molecular modeling methods to pursue the search and optimization of new MT targeting agents.


Assuntos
Excipientes , Paclitaxel , Células HeLa , Humanos , Microtúbulos , Paclitaxel/farmacologia , Tubulina (Proteína)
17.
J Chem Inf Model ; 60(2): 786-793, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31657548

RESUMO

The transmembrane glycoprotein mucin 1 (MUC1) is an attractive tumor marker for cancer therapy and diagnosis. The nine amino acid extracellular epitope APDTRPAPG of this protein is selectively recognized by the S2.2 single-stranded DNA anti-MUC1 aptamer, which has emerged as a promising template for designing novel targeting agents for MUC1-directed therapy. In this work, 100 ns molecular dynamics (MD) simulations, MM/GBSA binding free energy calculations, and conformational analysis were employed to propose a novel prospective anti-MUC1 aptamer with increased affinity toward the MUC1 epitope resulting from the double mutation of the T11 and T12 residues with PSU and U nucleosides, respectively. The double mutant aptamer exhibits a tight interaction with the MUC1 epitope and adopts a groove conformation that structurally favors the intermolecular contact with the epitope through the intermediate T11-A18 region leaving the 3' and 5' ends free for further chemical conjugation with a nanocarrier or pharmaceutical. These results are valuable to gain understanding about the molecular features governing aptamer-epitope interactions and constitute a first key step for the design of novel aptamer-based nanocarriers for MUC1-targeted cancer therapy.


Assuntos
Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Simulação por Computador , Terapia de Alvo Molecular , Mucina-1/metabolismo , Neoplasias/tratamento farmacológico , Aptâmeros de Nucleotídeos/química , Sequência de Bases , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Simulação de Dinâmica Molecular , Neoplasias/metabolismo , Conformação de Ácido Nucleico , Termodinâmica
18.
J Chem Inf Model ; 60(2): 915-922, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31841000

RESUMO

Acetohydroxyacid synthase (AHAS) is a thiamin diphosphate-dependent enzyme involved in the biosynthesis of valine, leucine, isoleucine, and lysine. Experimental evidence has shown that mutation of the Gln202 residue results in a decrease in the enzymatic activity, thus suggesting the main role of the carboligation catalyzed by AHAS. It has been postulated that this residue acts as an acid/base group, protonating the carbonyl oxygen from the 2-ketoacid substrate, during the carboligation reaction. However, previous studies have revealed that 2-ketoacid is not engaged in catalytically relevant interactions with ionizable groups that can act as an acid/base group during the catalysis. Therefore, it has been proposed that the carboligation reaction could occur through an intramolecular proton transfer without the assistance of an amino acid residue with acid-base properties. To decipher the role of Gln202, in this work, we studied the last two catalytic steps of the AHAS through quantum mechanics/molecular mechanics calculations using a full enzyme model of the wild-type AHAS and the Gln202Ala mutant. Our results indicate that the carboligation mechanism occurs through an intramolecular proton transfer that does not require the action of an additional acid-base group. The mechanism is composed of two steps in which the last one is rate-limiting. Our findings reveal that Gln202 stabilizes a catalytic water molecule in the reactive site through electrostatic contributions that are mostly relevant during the carboligation step, in agreement with experimental evidence. The catalytic water engages in intermolecular hydrogen bonds with the reacting species and makes a strong electronic contribution to the stabilization of the reaction intermediate (AL-ThDP).


Assuntos
Acetolactato Sintase/química , Acetolactato Sintase/metabolismo , Biocatálise , Glutamina , Leveduras/enzimologia , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica , Teoria Quântica
19.
J Chem Inf Model ; 60(2): 995-1004, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31876421

RESUMO

Neuroligin-1 (NL1) is a postsynaptic cell adhesion protein that plays a crucial role in synapsis and signaling between neurons. Due to its clustered distribution in synaptic clefts, NL1 appears as a novel potential site for synaptic targeting purposes. In this work, in silico protein topography analysis was employed to identify two prospective binding sites on the NL1 dimer surface in the 2:2 synaptic adhesion complex with ß-neurexin (PDB code 3B3Q ). Receptor-based rational design, cell-penetrating capability prediction, molecular docking, molecular dynamics simulations, and binding free energy calculations were used to identify five heptapeptides candidates with favorable predicted profiles as non cell-penetrating NL1-binding agents. Preliminary in vitro colocalization assays with NL1-transfected HEK 293 cells confirmed that peptides remain in the extracellular space without inducing detectable changes in cell morphology. The highest NL1-colocatization capability was attained by the peptide ADEAIVA, which appears as a promising candidate for the future development of specific NL1-targeting systems as part of synapse-directed therapies against central nervous system diseases.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Desenho de Fármacos , Peptídeos/metabolismo , Peptídeos/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sítios de Ligação , Moléculas de Adesão Celular Neuronais/química , Simulação por Computador , Células HEK293 , Humanos , Modelos Moleculares , Peptídeos/química , Multimerização Proteica , Estrutura Quaternária de Proteína
20.
Org Biomol Chem ; 17(25): 6269-6276, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31187851

RESUMO

In this work, molecular dynamics and QM/MM calculations were employed to examine the structural and catalytic features of the retaining glucosyltransferase GTF-SI from the GH70 family, which participates in the process of caries formation. Our goal was to obtain a deeper understanding of the role of R475 in the mechanism of sucrose breakage. This residue is highly conserved in the GH70 family and so far there has been no evidence that shows what could be the role of this residue in the catalysis performed by GTF-SI. In order to understand the structural role of R475 in the native enzyme, we built full enzyme models of the wild type and the mutants R475A and R475Q. These models were addressed by means of molecular dynamics simulations, which allowed the assessment of the dynamical effect of the R475 mutation on the active site. Then, representative structures were chosen for each one of the mutant models and QM/MM calculations were carried out to unravel the catalytic role of R475. Our results show that the R475 mutation increases the flexibility of the enzyme, which triggers the entrance of water molecules in the active site. In addition, QM/MM calculations indicate that R475 is able to provide a great stabilization to the carboxylate moiety of the acid/base E515, which is an essential characteristic favoring the proton transfer process that promotes the glycosidic bond breakage of sucrose.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosiltransferases/metabolismo , Streptococcus mutans/enzimologia , Arginina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico , Glucosiltransferases/química , Glucosiltransferases/genética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Teoria Quântica , Sacarose/química , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...