Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(9): 5988-5999, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38602478

RESUMO

Cyclam, known for its potent chelation properties, is explored for diverse applications through selective N-functionalization, offering versatile ligands for catalysis, medical research, and materials science. The challenges arising from N-alkylation, which could decrease the coordination properties, are addressed by introducing a robust C-functionalization method. The facile two-step synthesis proposed here involves the click chemistry-based C-functionalization of a hydroxyethyl cyclam derivative using Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC). Boc-protecting groups prevent undesired copper coordination, resulting in compounds with a wide range of functionalities. The optimized synthesis conditions enable C-functional cyclams to be obtained easily and advantageously, with high application potential in the previously cited fields. The methodology has been extended to trehalose-based Siamese twin amphiphiles, enabling efficient gene delivery applications.

2.
J Mater Chem B ; 12(14): 3445-3452, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502035

RESUMO

A novel family of precision-engineered gene vectors with well-defined structures built on trehalose and trehalose-based macrocycles (cyclotrehalans) comprising linear or cyclic polyamine heads have been synthesized through procedures that exploit click chemistry reactions. The strategy was conceived to enable systematic structural variations and, at the same time, ensuring that enantiomerically pure vectors are obtained. Notably, changes in the molecular architecture translated into topological differences at the nanoscale upon co-assembly with plasmid DNA, especially regarding the presence of regions with short- or long-range internal order as observed by TEM. In vitro and in vivo experiments further evidenced a significant impact on cell and organ transfection selectivity. Altogether, the results highlight the potential of trehalose-polyamine/pDNA nanocomplex monoformulations to achieve targeting transfection without the need for any additional cell- or organ-sorting component.


Assuntos
Poliaminas , Trealose , Trealose/química , Poliaminas/química , Transfecção , DNA/genética , DNA/química , Plasmídeos/genética
3.
Macromol Rapid Commun ; 43(11): e2200145, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35426201

RESUMO

A robust strategy is reported to build perfectly monodisperse star polycations combining a trehalose-based cyclooligosaccharide (cyclotrehalan, CT) central core onto which oligoethyleneimine radial arms are installed. The architectural perfection of the compounds is demonstrated by a variety of physicochemical techniques, including NMR, MS, DLS, TEM, and GPC. Key to the strategy is the possibility of customizing the cavity size of the macrocyclic platform to enable/prevent the inclusion of adamantane motifs. These properties can be taken into advantage to implement sequential levels of stimuli responsiveness by combining computational design, precision chemistry and programmed host-guest interactions. Specifically, it is shown that supramolecular dimers implying a trimeric CT-tetraethyleneimine star polycation and purposely designed bis-adamantane guests are preorganized to efficiently complex plasmid DNA (pDNA) into transfection-competent nanocomplexes. The stability of the dimer species is responsive to the protonation state of the cationic clusters, resulting in dissociation at acidic pH. This process facilitates endosomal escape, but reassembling can take place in the cytosol then handicapping pDNA nuclear import. By equipping the ditopic guest with a redox-sensitive disulfide group, recapturing phenomena are prevented, resulting in drastically improved transfection efficiencies both in vivo and in vitro.


Assuntos
Adamantano , Polímeros , Dimerização , Concentração de Íons de Hidrogênio , Oxirredução , Polieletrólitos , Polímeros/química
4.
Chemistry ; 27(36): 9429-9438, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33882160

RESUMO

Instilling segregated cationic and lipophilic domains with an angular disposition in a trehalose-based trifaceted macrocyclic scaffold allows engineering patchy molecular nanoparticles leveraging directional interactions that emulate those controlling self-assembling processes in viral capsids. The resulting trilobular amphiphilic derivatives, featuring a Mickey Mouse architecture, can electrostatically interact with plasmid DNA (pDNA) and further engage in hydrophobic contacts to promote condensation into transfectious nanocomplexes. Notably, the topology and internal structure of the cyclooligosaccharide/pDNA co-assemblies can be molded by fine-tuning the valency and characteristics of the cationic and lipophilic patches, which strongly impacts the transfection efficacy in vitro and in vivo. Outstanding organ selectivities can then be programmed with no need of incorporating a biorecognizable motif in the formulation. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes by making cyclooligosaccharide patchiness the focus.


Assuntos
Ciclodextrinas , Nanopartículas , DNA , Técnicas de Transferência de Genes , Plasmídeos/genética , Transfecção
5.
Biomacromolecules ; 21(12): 5173-5188, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33084317

RESUMO

The architectural perfection and multivalency of dendrimers have made them useful for biodelivery via peripheral functionalization and the adjustment of dendrimer generations. Modulation of the core-forming and internal matrix-forming structures offers virtually unlimited opportunities for further optimization, but only in a few cases this has been made compatible with strict diastereomeric purity over molecularly diverse series, low toxicity, and limited synthetic effort. Fully regular star polymers built on biocompatible macrocyclic platforms, such as hyperbranched cyclodextrins, offer advantages in terms of facile synthesis and flexible compositions, but core elaboration in terms of shape and function becomes problematic. Here we report the synthesis and characterization of star polymers consisting of functional trehalose-based macrocyclic cores (cyclotrehalans, CTs) and aminothiourea dendron arms, which can be efficiently synthesized from sequential click reactions of orthogonal monomers, display no cytotoxicity, and efficiently complex and deliver plasmid DNA in vitro and in vivo. When compared with some commercial cationic dendrimers or polymers, the new CT-scaffolded star polymers show better transfection efficiencies in several cell lines and structure-dependent cell selectivity patterns. Notably, the CT core could be predefined to exert Zn(II) complexing or molecular inclusion capabilities, which has been exploited to synergistically boost cell transfection by orders of magnitude and modulate the organ tropism in vivo.


Assuntos
Dendrímeros , Polímeros , Cátions , DNA , Plasmídeos , Transfecção
6.
Pharmaceutics ; 12(7)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664555

RESUMO

Finding a functional cure for HIV-1 infection will markedly decrease the social and economic burden of this disease. In this work, we have taken advantage of the antigen presenting cell role of human dendritic cells (DCs) to try to induce an immune response to HIV-derived peptide delivered to DCs using two different polycationic nanoparticles: a G4 PAMAM dendrimer modified to a 70/30 ratio of hydroxyl groups/amines and a cyclodextrin derivative. We have studied peptide delivery using a fluorescence peptide and have studied the immune response generation by cytokine determination and flow cytometry. We have found a robust delivery of the antigenic peptide to DCs and activated dendritic cell-mediated peripheral blood mononuclear cells (PBMCs) proliferation using the mixed lymphocyte reaction. However, no expression of markers indicating activation of either B or T lymphocytes was observed. Moreover, the release of the pro-inflammatory cytokine TNF-α or IL-2 was only observed when DCs treated with either the dendrimer or the dendriplex containing the peptide. Antigenic peptide delivery to DCs is a promising approach to generate a vaccine against HIV-1 infection. However, more studies, including the simultaneous delivery of several antigenic peptides from different viral proteins, can markedly improve the immune response.

7.
Org Biomol Chem ; 12(14): 2289-301, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24589885

RESUMO

Gaucher disease (GD) is a rare monogenetic disorder leading to dysfunction of acid ß-glucosidase (ß-glucocerebrosidase; GCase) and accumulation of glucosylceramide in lysosomes, especially in macrophages (Gaucher cells). Many of the mutations at the origin of GD do not impair the catalytic activity of GCase, but cause misfolding and subsequent degradation by the quality control system at the endoplasmic reticulum. Pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the endogenous mutant enzyme represent promising alternatives to the currently available enzyme replacement and substrate reduction therapies (ERT and SRT, respectively), but unfavorable biodistribution and potential side-effects remain important issues. We have now designed a strategy to enhance the controlled delivery of PCs to macrophages that exploit the formation of ternary complexes between the PC, a trivalent mannosylated ß-cyclodextrin (ßCD) conjugate and the macrophage mannose receptor (MMR). First, PC candidates with appropriate relative avidities towards the ßCD cavity and the GCase active site were selected to ensure efficient transfer of the PC cargo from the host to the GCase active site. Control experiments confirmed that the ßCD carrier was selectively recognized by mannose-specific lectins and that the corresponding PC:mannosylated ßCD supramolecular complex retained both the chaperoning activity, as confirmed in human GD fibroblasts, and the MMR binding ability. Finally, fluorescence microscopy techniques proved targeting and cellular uptake of the PC-loaded system in macrophages. Altogether, the results support that combined cyclodextrin encapsulation and glycotargeting may improve the efficacy of PCs for GD.


Assuntos
Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Doença de Gaucher/tratamento farmacológico , Macrófagos/metabolismo , Chaperonas Moleculares/administração & dosagem , beta-Ciclodextrinas/química , Configuração de Carboidratos , Doença de Gaucher/patologia , Humanos , Macrófagos/efeitos dos fármacos , Microscopia de Fluorescência , Chaperonas Moleculares/farmacologia , Chaperonas Moleculares/uso terapêutico , beta-Ciclodextrinas/administração & dosagem
8.
J Org Chem ; 78(16): 8143-8, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23859761

RESUMO

Monodisperse amphiphilic oligoethyleneimine (OEI)-ß-cyclodextrin (ßCD) clusters have been prepared, and their potential as gene delivery systems has been evaluated in comparison with a nonamphiphilic congener. The general prototype incorporates tetraethyleneimine segments linked to the primary rim of ßCD through either triazolyl or thioureidocysteaminyl connectors. Transfection efficiency data for the corresponding CD:pDNA nanocomplexes (CDplexes) in BNL-CL2 murine hepatocytes evidenced the strong beneficial effect of facial amphiphilicity.


Assuntos
Aziridinas/química , DNA/química , Nanoestruturas/química , Tensoativos/química , beta-Ciclodextrinas/química , Animais , Linhagem Celular , Química Click , Hepatócitos/química , Camundongos , Estrutura Molecular , Plasmídeos , Tensoativos/síntese química
9.
J Org Chem ; 78(4): 1390-403, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23336396

RESUMO

A systematic study of the suitability of α,α'-dibromo-o-xylene as a reagent for cyclic o-xylylene protection of vic-diols in different monosaccharide substrates is reported. The installation of this protecting group, formally equivalent to a di-O-benzylation reaction, proceeds with good regioselectivity toward 1,2-trans-diequatorial diol systems in pyranose and furanose rings. Initially, the benzyl ether-type derivative of the more acidic hydroxyl is preferentially formed. Subsequent intramolecular etherification toward the equatorial-oriented vicinal OH is kinetically favored. The methodology has been implemented for the simultaneous protection of the secondary O-2 and O-3 positions of a single d-glucopyranosyl unit in cyclic oligosaccharides of the cyclodextrin (CD) family (cyclomaltohexa-, -hepta-, and -octaose; α, ß, and γCD).

10.
Chem Soc Rev ; 42(11): 4518-31, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22911174

RESUMO

Despite efficiently imitating functional ligand presentations in terms of valency and density, most of the reported multivalent carbohydrate prototypes barely reflect the inherent heterogeneity of biological systems, therefore underestimating the potential contribution of synergistic or antagonistic effects to molecular recognition events. To address this question, the design of novel molecular and supramolecular entities displaying different saccharide motifs in a controlled manner is of critical importance. In this review we highlight the current efforts made to synthesize heteromultivalent glycosystems on different platforms (peptides, dendrimers, polymers, oligonucleotides, calixarenes, cyclodextrins, microarrays, vesicles) and to evaluate the influence of heterogeneity in carbohydrate-protein (lectin, antibody) recognition phenomena. Although the number of publications on this topic is limited as compared to the huge volume of reports on homomultivalent sugar displays, the current body of results has already unravelled the existence of new binding mechanisms that operate in heterogeneous environments whose exact biological significance remains to be unveiled.


Assuntos
Glicoconjugados/química , Anticorpos/imunologia , Carboidratos/química , Química Click , Glicoconjugados/metabolismo , Lectinas/química , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Proteínas/química , Proteínas/metabolismo
11.
J Org Chem ; 77(3): 1273-88, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22185523

RESUMO

A series of ß-cyclodextrin (ßCD)-scaffolded glycoclusters exposing heterogeneous yet perfectly controlled displays of α-mannosyl (α-Man) and ß-lactosyl (ß-Lact) antennas were synthesized to probe the mutual influence of varying densities of the saccharide motifs in the binding properties toward different plant lectins. Enzyme-linked lectin assay (ELLA) data indicated that the presence of ß-Lact residues reinforced binding of α-Man to the mannose-specific lectin concanavalin A (Con A) even though homogeneous ß-Lact clusters are not recognized at all by this lectin, supporting the existence of synergic recognition mechanisms (heterocluster effect). Conversely, the presence of α-Man motifs in the heteroglycoclusters also resulted in a binding-enhancing effect of ß-Lact toward peanut agglutinin (PNA), a lectin strongly binding multivalent lactosides but having no detectable affinity for α-mannopyranosides, for certain architectural arrangements. Two-site, sandwich-type ELLA data corroborated the higher lectin clustering efficiency of heterogeneous glycoclusters compared with homogeneous displays of the putative sugar ligand with identical valency. A turbidity assay was also consistent with the previous observations. Most revealingly, the lectin cross-linking ability of heterogeneous glycoclusters was sensitive to the presence of high concentrations of the non-ligand sugar, strongly suggesting that "mismatching" saccharide motifs may modulate carbohydrate-lectin specific recognition in a lectin-dependent manner when present in highly dense displays together with the "matching" ligand, a situation frequently encountered in biological systems.


Assuntos
Lectinas de Plantas/metabolismo , beta-Ciclodextrinas/química , beta-Ciclodextrinas/metabolismo , Configuração de Carboidratos , Lactose/química , Manose/química , Modelos Moleculares
12.
Beilstein J Org Chem ; 6: 20, 2010 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-20485602

RESUMO

Oligosaccharides are currently recognised as having functions that influence the entire spectrum of cell activities. However, a distinct disadvantage of naturally occurring oligosaccharides is their metabolic instability in biological systems. Therefore, much effort has been spent in the past two decades on the development of feasible routes to carbohydrate mimetics which can compete with their O-glycosidic counterparts in cell surface adhesion, inhibit carbohydrate processing enzymes, and interfere in the biosynthesis of specific cell surface carbohydrates. Such oligosaccharide mimetics are potential therapeutic agents against HIV and other infections, against cancer, diabetes and other metabolic diseases. An efficient strategy to access this type of compounds is the replacement of the glycosidic linkage by amide or pseudoamide functions such as thiourea, urea and guanidine. In this review we summarise the advances over the last decade in the synthesis of oligosaccharide mimetics that possess amide and pseudoamide linkages, as well as studies focussing on their supramolecular and recognition properties.

13.
J Org Chem ; 71(14): 5136-43, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16808499

RESUMO

Beta-(1-->6)-linked pseudodi- and pseudotrisaccharides incorporating alternating pseudoamide-type (urea, thiourea, guanidine) intersaccharide bridges have been prepared and evaluated as phosphate binders in water. The monosaccharide subunits induce the Z,Z rotameric form at the pseudoamide segments, thus favoring their participation in bidentate hydrogen-bond interactions with oxoanions. Moreover, the conformational properties about the anomeric C-1-N bonds and the sugar C-5--C-6 bonds privilege orientations that facilitate both the desolvation of the incoming anionic guest and the stabilization of the complex by cooperative interactions. Measurable association constants (K(as)) toward dimethyl and, especially, phenyl phosphate were obtained from NMR titration experiments for both series of glucooligomers, the binding affinity being strongly dependent on the nature of the pseudoamide functionality. Guanidinium derivatives, for which charge neutralization was expected to contribute to phosphate binding, were superior to the neutral thiourea and urea derivatives (K(as) = 48-60 M(-1) for 1:1 complexes with phenyl phosphate dianion). Interestingly, the thiourea oligomers exhibited association constants of the same order of magnitude (K(as) = 25-40 M(-1)), much higher than those observed for the urea analogues (K(as) = 2-3 M(-1)), which is ascribed to a less efficient solvation of the thiocarbonyl derivatives.


Assuntos
Guanidina/química , Oligossacarídeos/química , Fosfatos/química , Tioureia/química , Ureia/química , Configuração de Carboidratos , Sequência de Carboidratos , Dados de Sequência Molecular , Oligossacarídeos/síntese química , Estereoisomerismo , Água/química
14.
Chem Commun (Camb) ; (1): 92-3, 2004 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-14737347

RESUMO

A blockwise iterative synthetic strategy for the preparation of linear, dendritic and branched full-carbohydrate architectures has been developed by using sugar azido(carbamate) isothiocyanates as key templates; the presence of intersaccharide thiourea bridges provides anchoring points for hydrogen bond-directed molecular recognition of phosphate esters in water.


Assuntos
Oligossacarídeos/síntese química , Organofosfatos/química , Tioureia/química , Água/química , Sítios de Ligação , Configuração de Carboidratos , Sequência de Carboidratos , Glicóis/química , Ligação de Hidrogênio , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...