Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Pharm ; 608: 121064, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34481010

RESUMO

With McCrone's famous statement in mind, we set out to investigate the polymorphic behavior of a small-molecule dual inhibitor of Rac and Cdc42, currently undergoing preclinical trials. Herein, we report the existence of two polymorphs for 9-ethyl-3-(5-phenyl-1H-1,2,3-triazol-3-yl)-9H-carbazole (MBQ-167). These were characterized by differential scanning calorimetry, thermogravimetric analysis, Raman and Infrared spectroscopy, as well as powder and single crystal X-ray diffraction. The results obtained from the thermal analysis revealed that MBQ-167 form II undergoes an exothermic phase transition to form I, making this the thermodynamically stable form. An examination of the Burger-Ramberger rules for assigning thermodynamic relationships in polymorphic pairs indicate that this system is monotropic. The structure elucidation reveals that these forms crystallize in the orthorhombic (Pbca) and monoclinic (P21/n) space groups. A conformational analysis shows that the metastable form (form II) presents the most planar conformation along the significant torsion angles identified. Hirshfeld surface analysis confirms that van der Waals contacts are the primary interactions and only subtle differences in short contacts help differentiate each form. These findings support the notion that polymorphism is prevalent in organic molecules and that one should invest time and money probing possible polymorphs, particularly in early development as in the case of MBQ-167.


Assuntos
Cristalização , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Conformação Molecular , Transição de Fase , Difração de Raios X
2.
J Chem Eng Data ; 66(1): 832-839, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36262318

RESUMO

MBQ-167 is a novel, small-molecule dual inhibitor of Rac and Cdc42, small GTPases that are involved in cytoskeletal organization, cell cycle progression, and cell migration. In an in vivo mouse model, MBQ-167 has been shown to significantly reduce mammary tumor growth and metastasis and is currently undergoing preclinical studies for the treatment of metastatic cancer. To date, no solubility data have been reported for this compound. For this reason, the present study aims to determine the solubility of this compound in eight neat solvents (acetonitrile, 1-butanol, 2-butanol, ethanol, ethyl acetate, methanol, 1-propanol, and 2-propanol) and two binary solvent mixtures [ethyl acetate (2) + heptane (3) and ethanol (2) + water (3)] between the temperatures of 278.15 and 333.15 K. The results obtained employing the polythermal method show that the solubility of MBQ-167 increases with an increase in temperature in all neat solvents used within this study. Moreover, in the two binary solvent mixtures, the solubility of this compound increases with increasing temperature and decreases with an increasing mass fraction of the antisolvent (heptane or water). The experimental solubility data were correlated using the modified Apelblat and λh model equations. The predicted solubility data acquired from the Apelblat and λh model equations correlate well with the experimental solubility data as indicated by the low ARD % (≤1.8304 and ≤6.5366, respectively). No solvent-mediated polymorphic phase transitions were observed while performing the solubility studies, and no other solid forms were detected after the recrystallization in the solvents and solvent mixtures. The solubility data determined here can offer pathways to develop pharmaceutical crystallization processes that can further the translation of MBQ-167 into a clinical setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...