Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1168444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153618

RESUMO

The ErbB family of receptor tyrosine kinases is a primary target for small molecules and antibodies for pancreatic cancer treatment. Nonetheless, the current treatments for this tumor are not optimal due to lack of efficacy, resistance, or toxicity. Here, using the novel BiXAb™ tetravalent format platform, we generated bispecific antibodies against EGFR, HER2, or HER3 by considering rational epitope combinations. We then screened these bispecific antibodies and compared them with the parental single antibodies and antibody pair combinations. The screen readouts included measuring binding to the cognate receptors (mono and bispecificity), intracellular phosphorylation signaling, cell proliferation, apoptosis and receptor expression, and also immune system engagement assays (antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity). Among the 30 BiXAbs™ tested, we selected 3Patri-1Cetu-Fc, 3Patri-1Matu-Fc and 3Patri-2Trastu-Fc as lead candidates. The in vivo testing of these three highly efficient bispecific antibodies against EGFR and HER2 or HER3 in pre-clinical mouse models of pancreatic cancer showed deep antibody penetration in these dense tumors and robust tumor growth reduction. Application of such semi-rational/semi-empirical approach, which includes various immunological assays to compare pre-selected antibodies and their combinations with bispecific antibodies, represents the first attempt to identify potent bispecific antibodies against ErbB family members in pancreatic cancer.


Assuntos
Anticorpos Biespecíficos , Neoplasias Pancreáticas , Animais , Camundongos , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Transdução de Sinais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
2.
Cancers (Basel) ; 13(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206767

RESUMO

RIP140 is a major transcriptional coregulator of gut homeostasis and tumorigenesis through the regulation of Wnt/APC signaling. Here, we investigated the effect of RIP140 on Paneth cell differentiation and its interplay with the transcription factor SOX9. Using loss of function mouse models, human colon cancer cells, and tumor microarray data sets we evaluated the role of RIP140 in SOX9 expression and activity using RT-qPCR, immunohistochemistry, luciferase reporter assays, and GST-pull down. We first evidence that RIP140 strongly represses the Paneth cell lineage in the intestinal epithelium cells by inhibiting Sox9 expression. We then demonstrate that RIP140 interacts with SOX9 and inhibits its transcriptional activity. Our results reveal that the Wnt signaling pathway exerts an opposite regulation on SOX9 and RIP140. Finally, the levels of expression of RIP140 and SOX9 exhibit a reverse response and prognosis value in human colorectal cancer biopsies. This work highlights an intimate transcriptional cross-talk between RIP140 and SOX9 in intestinal physiopathology.

3.
Sci Rep ; 11(1): 7272, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790340

RESUMO

Modular response analysis (MRA) is a widely used inference technique developed to uncover directions and strengths of connections in molecular networks under a steady-state condition by means of perturbation experiments. We devised several extensions of this methodology to search genomic data for new associations with a biological network inferred by MRA, to improve the predictive accuracy of MRA-inferred networks, and to estimate confidence intervals of MRA parameters from datasets with low numbers of replicates. The classical MRA computations and their extensions were implemented in a freely available R package called aiMeRA ( https://github.com/bioinfo-ircm/aiMeRA/ ). We illustrated the application of our package by assessing the crosstalk between estrogen and retinoic acid receptors, two nuclear receptors implicated in several hormone-driven cancers, such as breast cancer. Based on new data generated for this study, our analysis revealed potential cross-inhibition mediated by the shared corepressors NRIP1 and LCoR. We designed aiMeRA for non-specialists and to allow biologists to perform their own analyses.


Assuntos
Algoritmos , Neoplasias da Mama , Redes Reguladoras de Genes , Proteínas de Neoplasias , Receptores do Ácido Retinoico , Software , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(17): E3563-E3572, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28400510

RESUMO

Low phosphate (Pi) availability constrains plant development and seed production in both natural and agricultural ecosystems. When Pi is scarce, modifications of root system architecture (RSA) enhance the soil exploration ability of the plant and lead to an increase in Pi uptake. In Arabidopsis, an iron-dependent mechanism reprograms primary root growth in response to low Pi availability. This program is activated upon contact of the root tip with low-Pi media and induces premature cell differentiation and the arrest of mitotic activity in the root apical meristem, resulting in a short-root phenotype. However, the mechanisms that regulate the primary root response to Pi-limiting conditions remain largely unknown. Here we report on the isolation and characterization of two low-Pi insensitive mutants (lpi5 and lpi6), which have a long-root phenotype when grown in low-Pi media. Cellular, genomic, and transcriptomic analysis of low-Pi insensitive mutants revealed that the genes previously shown to underlie Arabidopsis Al tolerance via root malate exudation, known as SENSITIVE TO PROTON RHIZOTOXICITY (STOP1) and ALUMINUM ACTIVATED MALATE TRANSPORTER 1 (ALMT1), represent a critical checkpoint in the root developmental response to Pi starvation in Arabidopsis thaliana Our results also show that exogenous malate can rescue the long-root phenotype of lpi5 and lpi6 Malate exudation is required for the accumulation of Fe in the apoplast of meristematic cells, triggering the differentiation of meristematic cells in response to Pi deprivation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Ferro/metabolismo , Malatos/metabolismo , Meristema/crescimento & desenvolvimento , Fosfatos/metabolismo , Proteínas de Arabidopsis/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...