Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(7): 3682-3701, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321954

RESUMO

Retinoic acid (RA) is the ligand of RA receptors (RARs), transcription factors that bind to RA response elements. RA signaling is required for multiple processes during embryonic development, including body axis extension, hindbrain antero-posterior patterning and forelimb bud initiation. Although some RA target genes have been identified, little is known about the genome-wide effects of RA signaling during in vivo embryonic development. Here, we stimulate the RA pathway by treating zebrafish embryos with all-trans-RA (atRA) and use a combination of RNA-seq, ATAC-seq, ChIP-seq and HiChIP to gain insight into the molecular mechanisms by which exogenously induced RA signaling controls gene expression. We find that RA signaling is involved in anterior/posterior patterning, central nervous system development, and the transition from pluripotency to differentiation. AtRA treatment also alters chromatin accessibility during early development and promotes chromatin binding of RARαa and the RA targets Hoxb1b, Meis2b and Sox3, which cooperate in central nervous system development. Finally, we show that exogenous RA induces a rewiring of chromatin architecture, with alterations in chromatin 3D interactions involving target genes. Altogether, our findings identify genome-wide targets of RA signaling and provide a molecular mechanism by which developmental signaling pathways regulate target gene expression by altering chromatin topology.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Tretinoína , Animais , Cromatina/metabolismo , Embrião não Mamífero/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Epigenoma , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia , Tretinoína/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(11): e2114802119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263228

RESUMO

SignificanceIn this manuscript, we address an essential question in developmental and evolutionary biology: How have changes in gene regulatory networks contributed to the invertebrate-to-vertebrate transition? To address this issue, we perturbed four signaling pathways critical for body plan formation in the cephalochordate amphioxus and in zebrafish and compared the effects of such perturbations on gene expression and gene regulation in both species. Our data reveal that many developmental genes have gained response to these signaling pathways in the vertebrate lineage. Moreover, we show that the interconnectivity between these pathways is much higher in zebrafish than in amphioxus. We conclude that this increased signaling pathway complexity likely contributed to vertebrate morphological novelties during evolution.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Anfioxos , Peixe-Zebra , Animais , Evolução Biológica , Gastrulação/genética , Anfioxos/embriologia , Anfioxos/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética
3.
Nat Commun ; 11(1): 3920, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764605

RESUMO

How the genome activates or silences transcriptional programmes governs organ formation. Little is known in human embryos undermining our ability to benchmark the fidelity of stem cell differentiation or cell programming, or interpret the pathogenicity of noncoding variation. Here, we study histone modifications across thirteen tissues during human organogenesis. We integrate the data with transcription to build an overview of how the human genome differentially regulates alternative organ fates including by repression. Promoters from nearly 20,000 genes partition into discrete states. Key developmental gene sets are actively repressed outside of the appropriate organ without obvious bivalency. Candidate enhancers, functional in zebrafish, allow imputation of tissue-specific and shared patterns of transcription factor binding. Overlaying more than 700 noncoding mutations from patients with developmental disorders allows correlation to unanticipated target genes. Taken together, the data provide a comprehensive genomic framework for investigating normal and abnormal human development.


Assuntos
Deficiências do Desenvolvimento/genética , Epigênese Genética , Organogênese/genética , Animais , Animais Geneticamente Modificados , Bases de Dados Genéticas , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Código das Histonas/genética , Humanos , Modelos Genéticos , Mutação , Organogênese/fisiologia , Regiões Promotoras Genéticas , Distribuição Tecidual , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
4.
Front Cell Dev Biol ; 7: 372, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32039199

RESUMO

Cis-regulatory elements (CREs) are non-coding DNA regions involved in the spatio-temporal regulation of gene expression. Gene regulatory changes drive animal development and play major roles during evolution of animal body plans. Therefore, we believe that determining CREs at different developmental stages and across animal lineages is critical to understand how evolution operates through development. The Assay for Transposase-Accessible Chromatin followed by high-throughput sequencing (ATAC-seq) is a powerful technique for the study of CREs that takes advantage of Tn5 transposase activity. Starting from fewer than 105 cells, in a 1-day procedure, it is possible to detect, at a genome-wide level, CREs located in open chromatin regions with high resolution. Here, we describe a detailed step-by-step ATAC-seq protocol for invertebrate chordate marine embryos. We have successfully applied this technique to amphioxus and two species of tunicate embryos. We also show an easy workflow to analyze data generated with this technique. Moreover, we point out that this method and our bioinformatic pipeline are efficient to detect CREs associated with Wnt signaling pathway by simply using embryos treated with a drug that perturbs this pathway. This approach can be extended to other signaling pathways and also to embryo mutants for critical genes. Our results therefore demonstrate the power of ATAC-seq for the identification of CREs that play essential functions during animal development in a wide range of invertebrate or vertebrate animals.

5.
Nature ; 564(7734): 64-70, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30464347

RESUMO

Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.


Assuntos
Regulação da Expressão Gênica , Genômica , Anfioxos/genética , Vertebrados/genética , Animais , Padronização Corporal/genética , Metilação de DNA , Humanos , Anfioxos/embriologia , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , Transcriptoma/genética
6.
Mol Syndromol ; 5(3-4): 170-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25126050

RESUMO

The human syndrome of coenzyme Q (CoQ) deficiency is a heterogeneous mitochondrial disease characterized by a diminution of CoQ content in cells and tissues that affects all the electron transport processes CoQ is responsible for, like the electron transference in mitochondria for respiration and ATP production and the antioxidant capacity that it exerts in membranes and lipoproteins. Supplementation with external CoQ is the main attempt to address these pathologies, but quite variable results have been obtained ranging from little response to a dramatic recovery. Here, we present the importance of modeling human CoQ deficiencies in animal models to understand the genetics and the pathology of this disease, although the election of an organism is crucial and can sometimes be controversial. Bacteria and yeast harboring mutations that lead to CoQ deficiency are unable to grow if they have to respire but develop without any problems on media with fermentable carbon sources. The complete lack of CoQ in mammals causes embryonic lethality, whereas other mutations produce tissue-specific diseases as in humans. However, working with transgenic mammals is time and cost intensive, with no assurance of obtaining results. Caenorhabditis elegans and Drosophila melanogaster have been used for years as organisms to study embryonic development, biogenesis, degenerative pathologies, and aging because of the genetic facilities and the speed of working with these animal models. In this review, we summarize several attempts to model reliable human CoQ deficiencies in invertebrates, focusing on mutant phenotypes pretty similar to those observed in human patients.

7.
BMJ Open ; 3(3)2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23533218

RESUMO

OBJECTIVES: Coenzyme Q10 (CoQ10) deficiency syndrome is a rare condition that causes mitochondrial dysfunction and includes a variety of clinical presentations as encephalomyopathy, ataxia and renal failure. First, we sought to set up what all have in common, and then investigate why CoQ10 supplementation reverses the bioenergetics alterations in cultured cells but not all the cellular phenotypes. DESIGN MODELLING STUDY: This work models the transcriptome of human CoQ10 deficiency syndrome in primary fibroblast from patients and study the genetic response to CoQ10 treatment in these cells. SETTING: Four hospitals and medical centres from Spain, Italy and the USA, and two research laboratories from Spain and the USA. PARTICIPANTS: Primary cells were collected from patients in the above centres. MEASUREMENTS: We characterised by microarray analysis the expression profile of fibroblasts from seven CoQ10-deficient patients (three had primary deficiency and four had a secondary form) and aged-matched controls, before and after CoQ10 supplementation. Results were validated by Q-RT-PCR. The profile of DNA (CpG) methylation was evaluated for a subset of gene with displayed altered expression. RESULTS: CoQ10-deficient fibroblasts (independently from the aetiology) showed a common transcriptomic profile that promotes cell survival by activating cell cycle and growth, cell stress responses and inhibiting cell death and immune responses. Energy production was supported mainly by glycolysis while CoQ10 supplementation restored oxidative phosphorylation. Expression of genes involved in cell death pathways was partially restored by treatment, while genes involved in differentiation, cell cycle and growth were not affected. Stably demethylated genes were unaffected by treatment whereas we observed restored gene expression in either non-methylated genes or those with an unchanged methylation pattern. CONCLUSIONS: CoQ10 deficiency induces a specific transcriptomic profile that promotes cell survival, which is only partially rescued by CoQ10 supplementation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...