Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 167: 107628, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918264

RESUMO

Obstructive sleep apnea (OSA) is a prevalent respiratory condition in children and is characterized by partial or complete obstruction of the upper airway during sleep. The respiratory events in OSA induce transient alterations of the cardiovascular system that ultimately can lead to increased cardiovascular risk in affected children. Therefore, a timely and accurate diagnosis is of utmost importance. However, polysomnography (PSG), the standard diagnostic test for pediatric OSA, is complex, uncomfortable, costly, and relatively inaccessible, particularly in low-resource environments, thereby resulting in substantial underdiagnosis. Here, we propose a novel deep-learning approach to simplify the diagnosis of pediatric OSA using raw electrocardiogram tracing (ECG). Specifically, a new convolutional neural network (CNN)-based regression model was implemented to automatically predict pediatric OSA by estimating its severity based on the apnea-hypopnea index (AHI) and deriving 4 OSA severity categories. For this purpose, overnight ECGs from 1,610 PSG recordings obtained from the Childhood Adenotonsillectomy Trial (CHAT) database were used. The database was randomly divided into approximately 60%, 20%, and 20% for training, validation, and testing, respectively. The diagnostic performance of the proposed CNN model largely outperformed the most accurate previous algorithms that relied on ECG-derived features (4-class Cohen's kappa coefficient of 0.373 versus 0.166). Specifically, for AHI cutoff values of 1, 5, and 10 events/hour, the binary classification achieved sensitivities of 84.19%, 76.67%, and 53.66%; specificities of 46.15%, 91.39%, and 98.06%; and accuracies of 75.92%, 86.96%, and 91.97%, respectively. Therefore, pediatric OSA can be readily identified by our proposed CNN model, which provides a simpler, faster, and more accessible diagnostic test that can be implemented in clinical practice.


Assuntos
Apneia Obstrutiva do Sono , Humanos , Criança , Apneia Obstrutiva do Sono/diagnóstico , Redes Neurais de Computação , Algoritmos , Polissonografia , Eletrocardiografia , Sono
2.
Adv Exp Med Biol ; 1384: 241-253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36217088

RESUMO

The airflow (AF) is a physiological signal involved in the overnight polysomnography (PSG) that reflects the respiratory activity. This signal is able to show the particularities of sleep apnea and is therefore used to define apneic events. In this regard, a growing number of studies have shown the usefulness of employing the overnight airflow as the only or combined information source for diagnosing sleep apnea in both children and adults. Due to its easy acquisition and interpretation, this biosignal has been widely analyzed by means of different signal processing techniques. In this chapter, we review the main methodological approaches applied to characterize and extract relevant information from this signal. In view of the results, we can conclude that the overnight airflow successfully reflects the particularities caused by the occurrence of apneic and hypopneic events and provides useful information for obtaining relevant biomarkers that characterize this disease.


Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Adulto , Criança , Humanos , Polissonografia/métodos , Ventilação Pulmonar/fisiologia , Processamento de Sinais Assistido por Computador , Sono , Síndromes da Apneia do Sono/diagnóstico , Apneia Obstrutiva do Sono/diagnóstico
3.
Comput Biol Med ; 147: 105784, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35797888

RESUMO

The gold standard approach to diagnose obstructive sleep apnea (OSA) in children is overnight in-lab polysomnography (PSG), which is labor-intensive for clinicians and onerous to healthcare systems and families. Simplification of PSG should enhance availability and comfort, and reduce complexity and waitlists. Airflow (AF) and oximetry (SpO2) signals summarize most of the information needed to detect apneas and hypopneas, but automatic analysis of these signals using deep-learning algorithms has not been extensively investigated in the pediatric context. The aim of this study was to evaluate a convolutional neural network (CNN) architecture based on these two signals to estimate the severity of pediatric OSA. PSG-derived AF and SpO2 signals from the Childhood Adenotonsillectomy Trial (CHAT) database (1638 recordings), as well as from a clinical database (974 recordings), were analyzed. A 2D CNN fed with AF and SpO2 signals was implemented to estimate the number of apneic events, and the total apnea-hypopnea index (AHI) was estimated. A training-validation-test strategy was used to train the CNN, adjust the hyperparameters, and assess the diagnostic ability of the algorithm, respectively. Classification into four OSA severity levels (no OSA, mild, moderate, or severe) reached 4-class accuracy and Cohen's Kappa of 72.55% and 0.6011 in the CHAT test set, and 61.79% and 0.4469 in the clinical dataset, respectively. Binary classification accuracy using AHI cutoffs 1, 5 and 10 events/h ranged between 84.64% and 94.44% in CHAT, and 84.10%-90.26% in the clinical database. The proposed CNN-based architecture achieved high diagnostic ability in two independent databases, outperforming previous approaches that employed SpO2 signals alone, or other classical feature-engineering approaches. Therefore, analysis of AF and SpO2 signals using deep learning can be useful to deploy reliable computer-aided diagnostic tools for childhood OSA.


Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Criança , Humanos , Redes Neurais de Computação , Oximetria , Polissonografia , Síndromes da Apneia do Sono/diagnóstico , Apneia Obstrutiva do Sono/diagnóstico
4.
Pediatr Res ; 89(7): 1771-1779, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32927472

RESUMO

BACKGROUND: Classic spectral analysis of heart rate variability (HRV) in pediatric sleep apnea-hypopnea syndrome (SAHS) traditionally evaluates the very low frequency (VLF: 0-0.04 Hz), low frequency (LF: 0.04-0.15 Hz), and high frequency (HF: 0.15-0.40 Hz) bands. However, specific SAHS-related frequency bands have not been explored. METHODS: One thousand seven hundred and thirty-eight HRV overnight recordings from two pediatric databases (0-13 years) were evaluated. The first one (981 children) served as training set to define new HRV pediatric SAHS-related frequency bands. The associated relative power (RP) were computed in the test set, the Childhood Adenotonsillectomy Trial database (CHAT, 757 children). Their relationships with polysomnographic variables and diagnostic ability were assessed. RESULTS: Two new specific spectral bands of pediatric SAHS within 0-0.15 Hz were related to duration of apneic events, number of awakenings, and wakefulness after sleep onset (WASO), while an adaptive individual-specific new band from HF was related to oxyhemoglobin desaturations, arousals, and WASO. Furthermore, these new spectral bands showed improved diagnostic ability than classic HRV. CONCLUSIONS: Novel spectral bands provide improved characterization of pediatric SAHS. These findings may pioneer a better understanding of the effects of SAHS on cardiac function and potentially serve as detection biomarkers. IMPACT: New specific heart rate variability (HRV) spectral bands are identified and characterized as potential biomarkers in pediatric sleep apnea. Spectral band BW1 (0.001-0.005 Hz) is related to macro sleep disruptions. Spectral band BW2 (0.028-0.074 Hz) is related to the duration of apneic events. An adaptive spectral band within the respiratory range, termed ABW3, is related to oxygen desaturations. The individual and collective diagnostic ability of these novel spectral bands outperforms classic HRV bands.


Assuntos
Frequência Cardíaca , Síndromes da Apneia do Sono/fisiopatologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
5.
Entropy (Basel) ; 22(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-33286442

RESUMO

The reference standard to diagnose pediatric Obstructive Sleep Apnea (OSA) syndrome is an overnight polysomnographic evaluation. When polysomnography is either unavailable or has limited availability, OSA screening may comprise the automatic analysis of a minimum number of signals. The primary objective of this study was to evaluate the complementarity of airflow (AF) and oximetry (SpO2) signals to automatically detect pediatric OSA. Additionally, a secondary goal was to assess the utility of a multiclass AdaBoost classifier to predict OSA severity in children. We extracted the same features from AF and SpO2 signals from 974 pediatric subjects. We also obtained the 3% Oxygen Desaturation Index (ODI) as a common clinically used variable. Then, feature selection was conducted using the Fast Correlation-Based Filter method and AdaBoost classifiers were evaluated. Models combining ODI 3% and AF features outperformed the diagnostic performance of each signal alone, reaching 0.39 Cohens's kappa in the four-class classification task. OSA vs. No OSA accuracies reached 81.28%, 82.05% and 90.26% in the apnea-hypopnea index cutoffs 1, 5 and 10 events/h, respectively. The most relevant information from SpO2 was redundant with ODI 3%, and AF was complementary to them. Thus, the joint analysis of AF and SpO2 enhanced the diagnostic performance of each signal alone using AdaBoost, thereby enabling a potential screening alternative for OSA in children.

6.
Entropy (Basel) ; 21(3)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33267025

RESUMO

Diabetic retinopathy (DR) is one of the most common causes of visual loss in developed countries. Computer-aided diagnosis systems aimed at detecting DR can reduce the workload of ophthalmologists in screening programs. Nevertheless, a large number of retinal images cannot be analyzed by physicians and automatic methods due to poor quality. Automatic retinal image quality assessment (RIQA) is needed before image analysis. The purpose of this study was to combine novel generic quality features to develop a RIQA method. Several features were calculated from retinal images to achieve this goal. Features derived from the spatial and spectral entropy-based quality (SSEQ) and the natural images quality evaluator (NIQE) methods were extracted. They were combined with novel sharpness and luminosity measures based on the continuous wavelet transform (CWT) and the hue saturation value (HSV) color model, respectively. A subset of non-redundant features was selected using the fast correlation-based filter (FCBF) method. Subsequently, a multilayer perceptron (MLP) neural network was used to obtain the quality of images from the selected features. Classification results achieved 91.46% accuracy, 92.04% sensitivity, and 87.92% specificity. Results suggest that the proposed RIQA method could be applied in a more general computer-aided diagnosis system aimed at detecting a variety of retinal pathologies such as DR and age-related macular degeneration.

7.
Entropy (Basel) ; 21(4)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33267131

RESUMO

Diabetic retinopathy (DR) is the main cause of blindness in the working-age population in developed countries. Digital color fundus images can be analyzed to detect lesions for large-scale screening. Thereby, automated systems can be helpful in the diagnosis of this disease. The aim of this study was to develop a method to automatically detect red lesions (RLs) in retinal images, including hemorrhages and microaneurysms. These signs are the earliest indicators of DR. Firstly, we performed a novel preprocessing stage to normalize the inter-image and intra-image appearance and enhance the retinal structures. Secondly, the Entropy Rate Superpixel method was used to segment the potential RL candidates. Then, we reduced superpixel candidates by combining inaccurately fragmented regions within structures. Finally, we classified the superpixels using a multilayer perceptron neural network. The used database contained 564 fundus images. The DB was randomly divided into a training set and a test set. Results on the test set were measured using two different criteria. With a pixel-based criterion, we obtained a sensitivity of 81.43% and a positive predictive value of 86.59%. Using an image-based criterion, we reached 84.04% sensitivity, 85.00% specificity and 84.45% accuracy. The algorithm was also evaluated on the DiaretDB1 database. The proposed method could help specialists in the detection of RLs in diabetic patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA