Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Acta Biomater ; 176: 445-457, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190928

RESUMO

The incorporation of cobalt ions into the composition of bioactive glasses has emerged as a strategy of interest for bone regeneration purposes. In the present work, we have designed a set of bioactive mesoporous glasses SiO2-CaO-P2O5-CoO (Co-MBGs) with different amounts of cobalt. The physicochemical changes introduced by the Co2+ ion, the in vitro effects of Co-MBGs on preosteoblasts and endothelial cells and their in vivo behaviour using them as bone grafts in a sheep model were studied. The results show that Co2+ ions neither destroy mesoporous ordering nor inhibit in vitro bioactive behaviour, exerting a dual role as network former and modifier for CoO concentrations above 3 % mol. On the other hand, the activity of Co-MBGs on MC3T3-E1 preosteoblasts and HUVEC vascular endothelial cells is dependent on the concentration of CoO present in the glass. For low Co-MBGs concentrations (1mg/ml) cell viability is not affected, while the expression of osteogenic (ALP, RUNX2 and OC) and angiogenic (VEGF) genes is stimulated. For Co-MBGs concentration of 5 mg/ml, cell viability decreases as a function of the CoO content. In vivo studies show that the incorporation of Co2+ ions to the MBGs improves the bone regeneration activity of these materials, despite the deleterious effect that this ion has on bone-forming cells for any of the Co-MBG compositions studied. This contradictory effect is explained by the marked increase in angiogenesis that takes place inside the bone defect, leading to an angiogenesis-osteogenesis coupling that compensates for the partial decrease in osteoblast cells. STATEMENT OF SIGNIFICANCE: The development of new bone grafts implies to address the need for osteogenesis-angiogenesis coupling that allows bone regeneration with viable tissue in the long term. In this sense the incorporation of cobalt ions into the composition of bioactive glasses has emerged as a strategy of great interest in this field. Due to the potential cytotoxic effect of cobalt ions, there is an important controversy regarding the suitability of their incorporation in bone grafts. In this work, we address this controversy after the implantation of cobalt-doped mesoporous bioactive glasses in a sheep model. The incorporation of cobalt ions in bioactive glasses improves the bone regeneration ability of these bone grafts, due to enhancement of the angiogenesis-osteogenesis coupling.


Assuntos
Células Endoteliais , Osteogênese , Animais , Ovinos , Cobalto/farmacologia , Cobalto/química , Dióxido de Silício , Íons , Vidro/química
2.
Rev. esp. cir. ortop. traumatol. (Ed. impr.) ; 67(4): 324-333, Jun-Jul. 2023. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-222533

RESUMO

Objetivo: Comparar in vivo la capacidad de formación ósea de dos tipos de biomateriales diseñados como sustitutivos óseos respecto a autoinjerto de cresta iliaca, uno basado en carbonatohidroxiapatita y otro en vidrio mesoporoso bioactivo. Material y método: Estudio experimental compuesto por 14 conejos de Nueva Zelanda hembras adultas donde se realizó un defecto crítico en hueso radio. La muestra fue dividida en cuatro grupos: defecto sin material, con autoinjerto de cresta iliaca, con soporte de carbonatohidroxiapatita y con soporte de vidrio mesoporoso bioactivo. Se realizaron estudios seriados de radiología simple a las 2, 4, 6 y 12 semanas y estudio de micro-TC a eutanasia a las 6 y 12 semanas. Resultados: En el estudio de radiología simple, el grupo de autoinjerto mostró las mayores puntuaciones de formación ósea (7,5 puntos). Ambos grupos de biomateriales presentaron formación ósea similar (5,3 y 6 puntos, respectivamente) y mayor al defecto sin material (4 puntos), pero siempre menor que el grupo de autoinjerto. Los resultados del estudio de micro-TC mostraron el mayor volumen de hueso en el área de estudio en el grupo de autoinjerto. Los grupos con sustitutivos óseos presentaron mayor volumen de hueso que el grupo sin material, pero siempre menor que en el grupo de autoinjerto. Conclusiones: Ambos soportes parecen favorecer la formación ósea pero no son capaces de reproducir las características del autoinjerto. Por sus diferentes características macroscópicas cada uno podría ser adecuado para un tipo diferente de defecto.(AU)


Aim: Compare bone formation capacity in vivo of two types of biomaterials designed as bone substitutes with respect to iliac crest autograft, one based on carbonate hydroxyapatites and the other one on bioactive mesoporous glass. Materials and methods: Experimental study consisting on 14 adult female New Zeland rabbits where a critical defect was made in the rabbit radius bone. The sample was divided into four groups: defect without material, with iliac crest autograft, with carbonatehydroxyapatite support, and with bioactive mesoporous glass support. Serial X-ray studies were carried out at 2, 4, 6 and 12 weeks and a microCT study at euthanasia at 6 and 12 weeks. Results: In the X-ray study, autograft group showed the highest bone formation scores. Both groups of biomaterials presented bone formation similar and greater than the defect without material, but always less than in the autograft group. The results of the microCT study showed the largest bone volume in the study area in the autograft group. The groups with bone substitutes presented greater bone volume than the group without material but always less than in the autograft group. Conclusion: Both supports seem to promote bone formation but are not capable of reproducing the characteristics of autograft. Due to their different macroscopic characteristics, each one could be suitable for a different type of defect.(AU)


Assuntos
Animais , Osteogênese , Materiais Biocompatíveis , Transplante Autólogo , Ílio/cirurgia , Coelhos/anatomia & histologia , Coelhos/cirurgia , Nova Zelândia , Radiografia , Durapatita , Regeneração Óssea
3.
Rev. esp. cir. ortop. traumatol. (Ed. impr.) ; 67(4): T324-T333, Jun-Jul. 2023. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-222534

RESUMO

Objetivo: Comparar in vivo la capacidad de formación ósea de dos tipos de biomateriales diseñados como sustitutivos óseos respecto a autoinjerto de cresta iliaca, uno basado en carbonatohidroxiapatita y otro en vidrio mesoporoso bioactivo. Material y método: Estudio experimental compuesto por 14 conejos de Nueva Zelanda hembras adultas donde se realizó un defecto crítico en hueso radio. La muestra fue dividida en cuatro grupos: defecto sin material, con autoinjerto de cresta iliaca, con soporte de carbonatohidroxiapatita y con soporte de vidrio mesoporoso bioactivo. Se realizaron estudios seriados de radiología simple a las 2, 4, 6 y 12 semanas y estudio de micro-TC a eutanasia a las 6 y 12 semanas. Resultados: En el estudio de radiología simple, el grupo de autoinjerto mostró las mayores puntuaciones de formación ósea (7,5 puntos). Ambos grupos de biomateriales presentaron formación ósea similar (5,3 y 6 puntos, respectivamente) y mayor al defecto sin material (4 puntos), pero siempre menor que el grupo de autoinjerto. Los resultados del estudio de micro-TC mostraron el mayor volumen de hueso en el área de estudio en el grupo de autoinjerto. Los grupos con sustitutivos óseos presentaron mayor volumen de hueso que el grupo sin material, pero siempre menor que en el grupo de autoinjerto. Conclusiones: Ambos soportes parecen favorecer la formación ósea pero no son capaces de reproducir las características del autoinjerto. Por sus diferentes características macroscópicas cada uno podría ser adecuado para un tipo diferente de defecto.(AU)


Aim: Compare bone formation capacity in vivo of two types of biomaterials designed as bone substitutes with respect to iliac crest autograft, one based on carbonate hydroxyapatites and the other one on bioactive mesoporous glass. Materials and methods: Experimental study consisting on 14 adult female New Zeland rabbits where a critical defect was made in the rabbit radius bone. The sample was divided into four groups: defect without material, with iliac crest autograft, with carbonatehydroxyapatite support, and with bioactive mesoporous glass support. Serial X-ray studies were carried out at 2, 4, 6 and 12 weeks and a microCT study at euthanasia at 6 and 12 weeks. Results: In the X-ray study, autograft group showed the highest bone formation scores. Both groups of biomaterials presented bone formation similar and greater than the defect without material, but always less than in the autograft group. The results of the microCT study showed the largest bone volume in the study area in the autograft group. The groups with bone substitutes presented greater bone volume than the group without material but always less than in the autograft group. Conclusion: Both supports seem to promote bone formation but are not capable of reproducing the characteristics of autograft. Due to their different macroscopic characteristics, each one could be suitable for a different type of defect.(AU)


Assuntos
Animais , Osteogênese , Materiais Biocompatíveis , Transplante Autólogo , Ílio/cirurgia , Coelhos/anatomia & histologia , Coelhos/cirurgia , Nova Zelândia , Radiografia , Durapatita , Regeneração Óssea
4.
Rev Esp Cir Ortop Traumatol ; 67(4): T324-T333, 2023.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-36940846

RESUMO

AIM: To compare the in vivo bone formation capacity of of biomaterials designed as bone substitutes with respect to iliac crest autograft, one based on carbonate hydroxiapatite and the other one on bioactive mesoporous glass. MATERIALS AND METHODS: Experimental study consisting on 14 adult female New Zeland rabbits where a critical defect was made in the rabbit radius bone. The sample was divided into four groups: defect without material, with iliac crest autograft, with carbonatehydroxyapatite scaffold, and with bioactive mesoporous glass scaffold. Serial X-ray studies were carried out at 2, 4, 6 and 12 weeks and a microCT study at euthanasia at 6 and 12 weeks. RESULTS: In the X-ray study, autograft group showed the highest bone formation scores. Both groups of biomaterials presented bone formation similar and greater than the defect without material, but always less than in the autograft group. The results of the microCT study showed the largest bone volume in the study area in the autograft group. The groups with bone substitutes presented greater bone volume than the group without material but always less than the autograft group. CONCLUSION: Both scaffolds seem to promote bone formation but are not capable of reproducing the characteristics of autograft. Due to their different macroscopic characteristics, each one could be suitable for a different type of defect.

5.
Rev Esp Cir Ortop Traumatol ; 67(4): 324-333, 2023.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-36646252

RESUMO

AIM: Compare bone formation capacity in vivo of two types of biomaterials designed as bone substitutes with respect to iliac crest autograft, one based on carbonate hydroxyapatites and the other one on bioactive mesoporous glass. MATERIALS AND METHODS: Experimental study consisting on 14 adult female New Zeland rabbits where a critical defect was made in the rabbit radius bone. The sample was divided into four groups: defect without material, with iliac crest autograft, with carbonatehydroxyapatite support, and with bioactive mesoporous glass support. Serial X-ray studies were carried out at 2, 4, 6 and 12 weeks and a microCT study at euthanasia at 6 and 12 weeks. RESULTS: In the X-ray study, autograft group showed the highest bone formation scores. Both groups of biomaterials presented bone formation similar and greater than the defect without material, but always less than in the autograft group. The results of the microCT study showed the largest bone volume in the study area in the autograft group. The groups with bone substitutes presented greater bone volume than the group without material but always less than in the autograft group. CONCLUSION: Both supports seem to promote bone formation but are not capable of reproducing the characteristics of autograft. Due to their different macroscopic characteristics, each one could be suitable for a different type of defect.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33132746

RESUMO

Mesoporous bioactive glasses (MBGs) are gaining increasing interest in the design of new biomaterials for bone defects treatment. An important research trend to enhance their biological behavior is the inclusion of moderate amounts of oxides with therapeutical action such as CuO. MBGs with composition (85-x)SiO2-10-CaO-5P2O5-xCuO (x = 0, 2.5 or 5 mol-%) were synthesized, investigating the influence of the CuO content and some synthesis parameters in their properties. Two series were developed; first one used HCl as catalyst and chlorides as CaO and CuO precursors, second one, used HNO3 and nitrates. MBGs of chlorides family exhibited calcium/copper phosphate nanoparticles between 10 and 20 nm in size. Nevertheless, CuO-containing MBGs of nitrates family showed metallic copper nanoparticles larger than 50 nm as well as quicker in vitro bioactive responses. Thus, MBGs of the nitrate series were coated by an apatite-like layer after 24 h soaked in simulated body fluid (SBF) a remarkably short period for a MBG containing 5% of CuO. A model, focused in the location of copper in the glass network, was proposed to relate nanostructure and in vitro behaviour. Moreover, after 24 h soaked in MEM or THB culture media, all the MBGs released therapeutic amounts of Ca2+ and Cu2+ ions. Because the quick bioactive response in SBF, the capacity to host biomolecules in their pores and to release therapeutic concentrations of Ca2+ and Cu2+ ions, MBGs of the nitrate families are proposed as excellent biomaterials for bone regeneration.

7.
Acta Biomater ; 114: 395-406, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717329

RESUMO

Bone regeneration is a clinical challenge which requires multiple approaches. Sometimes, it also includes the development of osteogenic and antibacterial biomaterials to treat the emergence of possible infection processes arising from surgery. This study evaluates the antibacterial properties of gelatin-coated meso-macroporous scaffolds based on the bioactive glass 80%SiO2-15%CaO-5%P2O5 (mol-%) before (BL-GE) and after being doped with 4% of ZnO (4ZN-GE) and loaded with both saturated and the minimal inhibitory concentrations of one of the antibiotics: levofloxacin (LEVO), vancomycin (VANCO), rifampicin (RIFAM) or gentamicin (GENTA). After physical-chemical characterization of materials, release studies of inorganic ions and antibiotics from the scaffolds were carried out. Moreover, molecular modelling allowed determining the electrostatic potential density maps and the hydrogen bonds of antibiotics and the glass matrix. Antibacterial in vitro studies (in planktonic, inhibition halos and biofilm destruction) with S. aureus and E. coli as bacteria models showed a synergistic effect of zinc ions and antibiotics. The effect was especially noticeable in planktonic cultures of S. aureus with 4ZN-GE scaffolds loaded with VANCO, LEVO or RIFAM and in E. coli cultures with LEVO or GENTA. Moreover, S. aureus biofilms were completely destroyed by 4ZN-GE scaffolds loaded with VANCO, LEVO or RIFAM and the E. coli biofilm total destruction was accomplished with 4ZN-GE scaffolds loaded with GENTA or LEVO. This approach could be an important step in the fight against microbial resistance and provide needed options for bone infection treatment. STATEMENT OF SIGNIFICANCE: Antibacterial capabilities of scaffolds based on mesoporous bioactive glasses before and after adding a 4% ZnO and loading with saturated and minimal inhibitory concentrations of levofloxacin, vancomycin, gentamicin or rifampicin were evaluated. Staphylococcus aureus and Escherichia coli were the infection model strains for the performed assays of inhibition zone, planktonic growth and biofilm. Good inhibition results and a synergistic effect of zinc ions released from scaffolds and antibiotics were observed. Thus, the amount of antibiotic required to inhibit the bacterial planktonic growth was substantially reduced with the ZnO inclusion in the scaffold. This study shows that the ZnO-MBG osteogenic scaffolds are multifunctional tools in bone tissue engineering because they are able to fight bacterial infections with lower antibiotic dosage.


Assuntos
Antibacterianos , Staphylococcus aureus , Antibacterianos/farmacologia , Escherichia coli , Vidro , Dióxido de Silício , Alicerces Teciduais , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...