Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1220306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545510

RESUMO

SARS-CoV-2, the cause of the COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome. Their roles during infection are still not completely understood. In this study, transcriptomics analysis revealed that both WNT5A and IL11 were significantly up-regulated in A549 cells expressing individual accessory proteins ORF6, ORF8, ORF9b or ORF9c from SARS-CoV-2 (Wuhan-Hu-1 isolate). IL11 is a member of the IL6 family of cytokines. IL11 signaling-related genes were also differentially expressed. Bioinformatics analysis disclosed that both WNT5A and IL11 were involved in pulmonary fibrosis idiopathic disease and functional assays confirmed their association with profibrotic cell responses. Subsequently, data comparison with lung cell lines infected with SARS-CoV-2 or lung biopsies from patients with COVID-19, evidenced altered profibrotic gene expression that matched those obtained in this study. Our results show ORF6, ORF8, ORF9b and ORF9c involvement in inflammatory and profibrotic responses. Thus, these accessory proteins could be targeted by new therapies against COVID-19 disease.


Assuntos
COVID-19 , Interleucina-11 , SARS-CoV-2 , Proteínas Virais , Humanos , SARS-CoV-2/genética , Proteínas Virais/genética , Fibrose Pulmonar Idiopática
2.
iScience ; 25(11): 105444, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36310646

RESUMO

SARS-CoV-2, the causative agent of the present COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome, and some have been implicated in facilitating infection and pathogenesis through their interaction with cellular components. Among these proteins, accessory protein ORF7a and ORF7b functions are poorly understood. In this study, A549 cells were transduced to express ORF7a and ORF7b, respectively, to explore more in depth the role of each accessory protein in the pathological manifestation leading to COVID-19. Bioinformatic analysis and integration of transcriptome results identified defined canonical pathways and functional groupings revealing that after expression of ORF7a or ORF7b, the lung cells are potentially altered to create conditions more favorable for SARS-CoV-2, by inhibiting the IFN-I response, increasing proinflammatory cytokines release, and altering cell metabolic activity and adhesion. Based on these results, it is plausible to suggest that ORF7a or ORF7b could be used as biomarkers of progression in this pandemic.

3.
Dev Comp Immunol ; 133: 104431, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35526640

RESUMO

In this report, we describe the characterization of a new monoclonal antibody, named 4H5CR4, against porcine CD9. Its use in combination with antibodies to CD4, CD8α, and 2E3 allows to distinguish at least five main CD4+ T cell subsets. Analysis on these subsets of CD45RA, CD27, CD29, CD95, CCR7, and SLA-DR markers depicts a progressive model of CD4+ T cell development. CD4+ 2E3+ CD8α- CD9- cells are the least differentiated population of naïve cells, whereas the CD4+ 2E3- CD8α+CD9+ and CD4+ 2E3- CD8α+ CD9- cells display phenotypic features of central and effector memory T helper cells, respectively. The latter subsets were able to produce IFN-γ after polyclonal activation with PMA/Ionomycin; however, in vitro virus-specific IFN-γ production of PBMCs collected at 38-44 days after pseudorabies virus vaccination was dominated by cells with a CD9+ phenotype. Therefore, CD9 appears to be a useful marker to investigate CD4+ T cell heterogeneity in swine.


Assuntos
Linfócitos T CD4-Positivos , Subpopulações de Linfócitos T , Animais , Diferenciação Celular , Memória Imunológica , Antígenos Comuns de Leucócito , Fenótipo , Suínos
4.
Antibiotics (Basel) ; 10(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34572682

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is the main infectious agent responsible for piglet post-weaning diarrhea with high mortality rates. Antimicrobials represent the current principal strategy for treating ETEC infections in pig farms, but the occurrence of multi-resistant bacterial strains has considerably increased in the last decades. Thus, finding non-antibiotic alternatives becomes a real emergency. In this context, we investigated the effect of a live yeast strain, Saccharomyces cerevisiae var boulardii CNCM I-1079 (SB) in an in vitro model of the weaning piglet colon implemented with a mucus phase (MPigut-IVM) inoculated with ETEC and coupled with an intestinal porcine cell line IPI-2I. We showed that SB was able to modulate the in vitro microbiota through an increase in Bacteroidiaceae and a decrease in Prevotellaceae families. Effluents collected from the SB treated bioreactors were able to mitigate the expression level of genes encoding non-gel forming mucins, tight junction proteins, innate immune pathway, and pro-inflammatory response in IPI-2I cells. Furthermore, SB exerted a significant protective effect against ETEC adhesion on porcine IPEC-J2 intestinal cells in a dose-dependent manner and showed a positive effect on ETEC-challenged IPEC-J2 by lowering expression of genes involved in pro-inflammatory immune responses. Our results showed that the strain SB CNCM I-1079 could prevent microbiota dysbiosis associated with weaning and protect porcine enterocytes from ETEC infections by reducing bacterial adhesion and modulating the inflammatory response.

5.
Front Microbiol ; 12: 703421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349744

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is the principal pathogen responsible for post-weaning diarrhea in newly weaned piglets. Expansion of ETEC at weaning is thought to be the consequence of various stress factors such as transient anorexia, dietary change or increase in intestinal inflammation and permeability, but the exact mechanisms remain to be elucidated. As the use of animal experiments raise more and more ethical concerns, we used a recently developed in vitro model of piglet colonic microbiome and mucobiome, the MPigut-IVM, to evaluate the effects of a simulated weaning transition and pathogen challenge at weaning. Our data suggested that the tested factors impacted the composition and functionality of the MPigut-IVM microbiota. The simulation of weaning transition led to an increase in relative abundance of the Prevotellaceae family which was further promoted by the presence of the ETEC strain. In contrast, several beneficial families such as Bacteroidiaceae or Ruminococcaceae and gut health related short chain fatty acids like butyrate or acetate were reduced upon simulated weaning. Moreover, the incubation of MPigut-IVM filtrated effluents with porcine intestinal cell cultures showed that ETEC challenge in the in vitro model led to an increased expression of pro-inflammatory genes by the porcine cells. This study provides insights about the etiology of a dysbiotic microbiota in post-weaning piglets.

6.
Res Vet Sci ; 135: 85-95, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33454582

RESUMO

Varroa mite is the major threat to the western honey bee, Apis mellifera, and the cause of significant economic losses in the apiculture industry. Varroa destructor feeds on brood and adult bees being responsible for vectoring virus infections and other diseases. This study analyses the role of Varroa and other associated pathogens, such as viruses or the fungus Nosema ceranae, and their relationships regarding the viability of the bee colony. It has been carried out during one beekeeping season, with the subspecies A. m. iberiensis, commonly used in the apiculture industry of Spain. Our study shows a significant relationship between the presence of Varroa destructor and viral infection by deformed wing virus and acute bee paralysis virus. Nosema ceranae behaved as an opportunistic pathogen. In addition, this study explored a potential naturally occurring subset of peptides, responsible for the humoral immunity of the bees. The expression of the antimicrobial peptides abaecin and melittin showed a significant relationship with the levels of Varroa mite and the deformed wing virus.


Assuntos
Abelhas/microbiologia , Abelhas/parasitologia , Colapso da Colônia/microbiologia , Colapso da Colônia/parasitologia , Varroidae/parasitologia , Animais , Criação de Abelhas , Abelhas/virologia , Colapso da Colônia/virologia , Dicistroviridae/fisiologia , Nosema/fisiologia , Vírus de RNA/fisiologia , Espanha
7.
Vet Pathol ; 56(5): 681-690, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31106677

RESUMO

Salmonella is a major foodborne pathogen and pork is one of the main sources of human salmonellosis. Understanding the pathogenesis and progression of the infection within the host is of interest to establish potential approaches to control the disease in pigs. The present study evaluates factors such as intestinal colonization, fecal shedding, and pathogen persistence by 2 studies using experimental challenge with Salmonella Typhimurium in weaned pigs and euthanasia at different time points (1, 2, and 6 and 2, 14, and 30 days postinfection [dpi], respectively). Histopathology of intestine at early time points (1 dpi and 2 dpi) showed severe damage to the epithelium together with an increase in polymorphonuclear cells and macrophages (P < .001), particularly in jejunum and ileum. Large quantities of Salmonella were detected within the contents of the ileum, cecum, and colon in early infection. Salmonella could also be observed in the medulla of tonsils and mesenteric lymph nodes. From 6 dpi onward, signs of recovery were observed, with progressive restoration of the epithelium, reduction of the inflammatory infiltrate, and elimination of Salmonella from the mucosa. Concentration of Salmonella in feces and ileum content decreased, but shedding did not cease even at 4 weeks after infection. Persistence of the bacteria in mesenteric lymph nodes was identified within the connective tissue at 14 and 30 dpi. Our results demonstrate a recovery of the disease after an initial acute phase but also show persistence within the lumen and surrounding lymphoid tissue. These findings are relevant to developing effective control strategies.


Assuntos
Gastroenteropatias/veterinária , Trato Gastrointestinal/microbiologia , Tecido Linfoide/microbiologia , Salmonelose Animal/microbiologia , Salmonella typhimurium/isolamento & purificação , Doenças dos Suínos/microbiologia , Animais , Fezes/microbiologia , Gastroenteropatias/microbiologia , Suínos
8.
Res Vet Sci ; 124: 310-316, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31030118

RESUMO

NOD-like receptors (NLRs) play a key role in the innate immune system, acting as a second line of surveillance against pathogens. NLRs detect particular bacteria that have gained access to the cytoplasm, evading recognition by other pattern recognition receptors, such as Toll-like receptors. It has been demonstrated that coding sequence-single nucleotide polymorphisms may alter the ligand recognition ability of NLRs, affecting their pathogen-sensing function. However, there have been no data relating to the identification and functional analysis of SNPs in porcine NLR promoters. We examined the promoter sequences of the porcine NOD1 and NOD2 genes with the aim to identify and to evaluate the effect of genetic variations on promoter activity. Six SNPs in NOD1 and three SNPs in NOD2 were identified. Luciferase reporter gene assays showed significant differences in promoter activity between allele variants of NOD1 -920G>A (NC_010460.4:g.42431413G>A) and NOD2 -1670G>A (NC_010448.4:g.34169122T>C) SNPs. The results suggest that promoter polymorphisms could modify the expression levels of porcine NOD1 and NOD2 genes.


Assuntos
Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Sus scrofa/genética , Animais , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Análise de Sequência de DNA , Sus scrofa/metabolismo
9.
Vet Res ; 49(1): 90, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30208957

RESUMO

African swine fever (ASF) is a pathology of pigs against which there is no treatment or vaccine. Understanding the equilibrium between innate and adaptive protective responses and immune pathology might contribute to the development of strategies against ASFV. Here we compare, using a proteomic approach, the course of the in vivo infection caused by two homologous strains: the virulent E75 and the attenuated E75CV1. Our results show a progressive loss of proteins by day 7 post-infection (pi) with E75, reflecting tissue destruction. Many signal pathways were affected by both infections but in different ways and extensions. Cytoskeletal remodelling and clathrin-endocytosis were affected by both isolates, while a greater number of proteins involved on inflammatory and immunological pathways were altered by E75CV1. 14-3-3 mediated signalling, related to immunity and apoptosis, was inhibited by both isolates. The implication of the Rho GTPases by E75CV1 throughout infection is also evident. Early events reflected the lack of E75 recognition by the immune system, an evasion strategy acquired by the virulent strains, and significant changes at 7 days post-infection (dpi), coinciding with the peak of infection and the time of death. The protein signature at day 31 pi with E75CV1 seems to reflect events observed at 1 dpi, including the upregulation of proteosomal subunits and molecules described as autoantigens (vimentin, HSPB1, enolase and lymphocyte cytosolic protein 1), which allow the speculation that auto-antibodies could contribute to chronic ASFV infections. Therefore, the use of proteomics could help understand ASFV pathogenesis and immune protection, opening new avenues for future research.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/imunologia , Linfonodos/imunologia , Proteômica , Febre Suína Africana/virologia , Animais , Suínos
10.
Sci Rep ; 8(1): 7788, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773876

RESUMO

Salmonella is a major foodborne pathogen which successfully infects animal species for human consumption such as swine. The pathogen has a battery of virulence factors which it uses to colonise and persist within the host. The host microbiota may play a role in resistance to, and may also be indirectly responsible from some of the consequences of, Salmonella infection. To investigate this, we used 16S rRNA metagenomic sequencing to determine the changes in the gut microbiota of pigs in response to infection by Salmonella Typhimurium at three locations: ileum mucosa, ileum content and faeces. Early infection (2 days post-infection) impacted on the microbiome diversity at the mucosa, reflected in a decrease in representatives of the generally regarded as desirable genera (i.e., Bifidobacterium and Lactobacillus). Severe damage in the epithelium of the ileum mucosa correlated with an increase in synergistic (with respect to Salmonella infection; Akkermansia) or opportunistically pathogenic bacteria (Citrobacter) and a depletion in anaerobic bacteria (Clostridium spp., Ruminococcus, or Dialliser). Predictive functional analysis, together with metabolomic analysis revealed changes in glucose and lipid metabolism in infected pigs. The observed changes in commensal healthy microbiota, including the growth of synergistic or potentially pathogenic bacteria and depletion of beneficial or competing bacteria, could contribute to the pathogen's ability to colonize the gut successfully. The findings from this study could be used to form the basis for further research aimed at creating intervention strategies to mitigate the effects of Salmonella infection.


Assuntos
Microbiota , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Suínos/microbiologia , Animais , Fezes/microbiologia , Íleo/microbiologia , Mucosa Intestinal/microbiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-28491823

RESUMO

Campylobacter jejuni is the leading food-borne poisoning in industrialized countries. While the bacteria causes disease in humans, it merely colonizes the gut in poultry or pigs, where seems to establish a commensal relationship. Until now, few studies have been conducted to elucidate the relationship between C. jejuni and its different hosts. In this work, a comparative proteomics approach was used to identify the underlying mechanisms involved in the divergent outcome following C. jejuni infection in human and porcine host. Human (INT-407) and porcine (IPEC-1) intestinal cell lines were infected by C. jejuni for 3 h (T3h) and 24 h (T24h). C. jejuni infection prompted an intense inflammatory response at T3h in human intestinal cells, mainly characterized by expression of proteins involved in cell spreading, cell migration and promotion of reactive oxygen species (ROS). Proteomic analysis evidenced significantly regulated biofunctions in human cells related with engulfment and endocytosis, and supported by canonical pathways associated to infection such as caveolar- and clathrin-mediated endocytosis signaling. In porcine IPEC-1 cells, inflammatory response as well as signaling pathways that control cellular functions such as cell migration, endocytosis and cell cycle progression resulted downregulated. These differences in the host response to infection were supported by the different pattern of adhesion and invasion proteins expressed by C. jejuni in human and porcine cells. No marked differences in expression of virulence factors involved in adaptive response and iron acquisition functions were observed. Therefore, the results of this study suggest that both host and pathogen factors are responsible for commensal or infectious character of C. jejuni in different hosts.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter jejuni/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Proteômica/métodos , Simbiose/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/isolamento & purificação , Campylobacter jejuni/metabolismo , Ciclo Celular , Linhagem Celular , Movimento Celular , Galinhas/microbiologia , Clatrina/farmacologia , Endocitose , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Intestinos/microbiologia , Proteoma/análise , Espécies Reativas de Oxigênio , Transdução de Sinais , Suínos , Fatores de Virulência/metabolismo
12.
Vet Res ; 46: 135, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26589145

RESUMO

African swine fever virus (ASFV) is the causal agent of African swine fever, a hemorrhagic and often lethal porcine disease causing enormous economical losses in affected countries. Endemic for decades in most of the sub-Saharan countries and Sardinia, the risk of ASFV-endemicity in Europe has increased since its last introduction into Europe in 2007. Live attenuated viruses have been demonstrated to induce very efficient protective immune responses, albeit most of the time protection was circumscribed to homologous ASFV challenges. However, their use in the field is still far from a reality, mainly due to safety concerns. In this study we compared the course of the in vivo infection caused by two homologous ASFV strains: the virulent E75 and the cell cultured adapted strain E75CV1, obtained from adapting E75 to grow in the CV1 cell-line. Interestingly, the kinetics of both viruses not only differed on the clinical signs that they caused and in the virus loads found, but also in the immunological pathways activated throughout the infections. Furthermore, E75CV1 confirmed its protective potential against the homologous E75 virus challenge and allowed the demonstration of poor cross-protection against BA71, thus defining it as heterologous. The in vitro specificity of the CD8(+) T-cells present at the time of lethal challenge showed a clear activation against the homologous virus (E75) but not against BA71. These findings will be of utility for a better understanding of ASFV pathogenesis and for the rational designing of safe and efficient vaccines against this virus.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Imunidade Inata , Vacinas Virais/imunologia , Febre Suína Africana/virologia , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Suínos , Vacinas Atenuadas/imunologia
13.
Vet Immunol Immunopathol ; 162(1-2): 14-23, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25307769

RESUMO

Campylobacter jejuni and Campylobacter coli are recognized as the leading causes of human diarrheal disease throughout the development world. Unlike human beings, gastrointestinal tract of pigs are frequently colonized by Campylobacter to a high level in a commensal manner. The aim of this study was to identify the differences underlying the divergent outcome following Campylobacter challenge in porcine versus human host. In order to address this, a comparative in vitro infection model was combined with microscopy, gentamicin protection assay, ELISA and quantitative PCR techniques. Invasion assays revealed that Campylobacter invaded human cells up to 10-fold more than porcine cells (p<0.05). In addition, gene expression of proinflammatory genes encoding for IL1α, IL6, IL8, CXCL2 and CCL20 were strongly up-regulated by Campylobacter in human epithelial cell at early times of infection, whereas a very reduced cytokine gene expression was detected in porcine epithelial cells. These data indicate that Campylobacter fails to invade porcine cells compared to human cells, and this leads to a lack of proinflammatory response induction, probably due to its pathogenic or commensal behavior in human and porcine host, respectively.


Assuntos
Infecções por Campylobacter/veterinária , Campylobacter/imunologia , Citocinas/imunologia , Suínos/microbiologia , Animais , Campylobacter/genética , Infecções por Campylobacter/imunologia , Infecções por Campylobacter/microbiologia , Linhagem Celular , Citocinas/genética , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Microscopia Confocal/veterinária , Microscopia Eletrônica de Varredura/veterinária , RNA Bacteriano/química , RNA Bacteriano/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Estatísticas não Paramétricas , Suínos/imunologia
14.
Vet Immunol Immunopathol ; 145(1-2): 505-10, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22129786

RESUMO

CD11b (α(M)) is a cell-surface glycoprotein mainly expressed on myeloid cells, required for important interactions during the immune response and involved in the pathogenesis of several diseases. The full length cDNA encoding porcine CD11b protein has been cloned and sequenced. Pig CD11b cDNA sequence contains an ORF of 3459 nucleotides that encodes a deduced polypeptide of 1152 amino acid residues that share with CD11b from other species: High % amino acid identity, common domains (α-I, Ca(++) binding, MIDAS), N-glycosylation sites, and the seven FG-GAP tandem repeats. Real time quantitative PCR expression analysis revealed that CD11b transcripts were highly expressed in neutrophils, showing a lower expression in spleen. The CD11a-CD11b-CD11c gene cluster locates on the porcine chromosome region SSC3p15-17.


Assuntos
Antígeno CD11a/genética , Antígeno CD11b/genética , Expressão Gênica/genética , Família Multigênica/genética , Suínos/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico/veterinária , Clonagem Molecular , DNA Complementar/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Alinhamento de Sequência/veterinária , Suínos/imunologia , Distribuição Tecidual/genética
15.
BMC Proc ; 5 Suppl 4: S11, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21645290

RESUMO

BACKGROUND: Experimental exposure of swine neutrophils to bacterial lipopolysaccharide (LPS) represents a model to study the innate immune response during bacterial infection. Neutrophils can effectively limit the infection by secreting lipid mediators, antimicrobial molecules and a combination of reactive oxygen species (ROS) without new synthesis of proteins. However, it is known that neutrophils can modify the gene expression after LPS exposure. We performed microarray gene expression analysis in order to elucidate the less known transcriptional response of neutrophils during infection. METHODS: Blood samples were collected from four healthy Iberian pigs and neutrophils were isolated and incubated during 6, 9 and 18 hrs in presence or absence of lipopolysaccharide (LPS) from Salmonella enterica serovar Typhimurium. RNA was isolated and hybridized to Affymetrix Porcine GeneChip®. Microarray data were normalized using Robust Microarray Analysis (RMA) and then, differential expression was obtained by an analysis of variance (ANOVA). RESULTS: ANOVA data analysis showed that the number of differentially expressed genes (DEG) after LPS treatment vary with time. The highest transcriptional response occurred at 9 hr post LPS stimulation with 1494 DEG whereas at 6 and 18 hr showed 125 and 108 DEG, respectively. Three different gene expression tendencies were observed: genes in cluster 1 showed a tendency toward up-regulation; cluster 2 genes showing a tendency for down-regulation at 9 hr; and cluster 3 genes were up-regulated at 9 hr post LPS stimulation. Ingenuity Pathway Analysis revealed a delay of neutrophil apoptosis at 9 hr. Many genes controlling biological functions were altered with time including those controlling metabolism and cell organization, ubiquitination, adhesion, movement or inflammatory response. CONCLUSIONS: LPS stimulation alters the transcriptional pattern in neutrophils and the present results show that the robust transcriptional potential of neutrophils under infection conditions, indicating that active regulation of gene expression plays a major role in the neutrophil-mediated- innate immune response.

16.
Gene ; 481(1): 29-40, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21549183

RESUMO

CD51 (α(v)) is an integrin chain that associates with multiple ß integrin chains to form different receptor complexes that mediate important human processes. Pigs show substantial physiological, immunological and anatomical similarities to humans, and are therefore a good model system to study immunological and pathological processes. Here we report the cloning and characterization of two cDNAs produced by alternative splicing that encode two different porcine CD51 proteins that differ in five amino acid residues. Pig CD51 cDNAs encode polypeptides of 1046 or 1041 amino acid residues, respectively, that share with other mammalian homologous proteins a high percentage amino acid identity and the functional domains. Expression analysis of CD51 was carried out at two different levels. RT-PCR analysis revealed that both CD51 transcripts were expressed ubiquitously but heterogeneously, with the exception of some platelets in which only the smallest CD51 transcript was detected. A specific monoclonal antibody against a pig CD51 recombinant protein was made and used in the immunohistochemical localization of CD51 proteins. It showed that CD51 was mainly expressed in hematopoietic cells of myeloid linage, epithelial and endothelial cells, osteoclasts, nervous fibers and smooth muscle. Adhesion assays showed that in the presence of Mn(++) pig α(v)-CHO-B2 transfected cells increased their attachment to fibronectin and vitonectin, but not to fibrinogen. Finally, we localized the CD51 gene on the porcine chromosome 15 (SSC15), q23-q26.


Assuntos
Integrina alfaV/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Adesão Celular , Mapeamento Cromossômico , Clonagem Molecular , DNA Complementar , Fibronectinas/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Proteínas Recombinantes , Alinhamento de Sequência , Suínos
17.
Mol Biol Rep ; 38(2): 1021-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20585885

RESUMO

The tetra-membrane-spanning protein, CD9 is a 24-27 kDa cell surface glycoprotein expressed in a wide variety of human cells being involved in a variety of cell processes, including signaling, adhesion, motility, fertilization and tumor cells metastasis. By means of a polyclonal antibody (N1) raised against recombinant swine CD9 protein, we studied the immunohistochemical expression of CD9 on different normal swine tissues. Immunochemistry shows that swine CD9 was distribute in a similar form than in human tissues, being present on epithelial cells of lung, liver, kidney, skin, tonsil, testis (epididymo), gut mucosa, uterus and mama. Furthermore, polyclonal antibody against swine CD9 reacts with white matter from cerebrum and cerebellum, peripheral nerves fibers and Hassal corpuscle from thymus and ovum. Platelets react strongly with our antibody, but monocytes and neutrophils react lightly. These results suggest that CD9 antigen should play a similar functional role in swine and human and therefore studies on CD9 on swine as an animal model would allow new knowledge about its role in adhesion, fertilization and tumor metastasis among other important biomedical processes.


Assuntos
Antígenos CD/biossíntese , Imuno-Histoquímica/métodos , Glicoproteínas de Membrana/biossíntese , Animais , Plaquetas/citologia , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Leucócitos Mononucleares/citologia , Proteínas Recombinantes/química , Transdução de Sinais , Suínos , Tetraspanina 29 , Distribuição Tecidual
18.
BMC Proc ; 3 Suppl 4: S6, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19615119

RESUMO

BACKGROUND: Once a list of differentially expressed genes has been identified from a microarray experiment, a subsequent post-analysis task is required in order to find the main biological processes associated to the experimental system. This paper describes two pathways analysis tools, ArrayUnlock and Ingenuity Pathways Analysis (IPA) to deal with the post-analyses of microarray data, in the context of the EADGENE and SABRE post-analysis workshop. Dataset employed in this study proceeded from an experimental chicken infection performed to study the host reactions after a homologous or heterologous secondary challenge with two species of Eimeria. RESULTS: Analysis of the same microarray data source employing both commercial pathway analysis tools in parallel let to identify several biological and/or molecular functions altered in the chicken Eimeria maxima infection model, including several immune system related pathways. Biological functions differentially altered in the homologous and heterologous second infection were identified. Similarly, the effect of the timing in a homologous second infection was characterized by several biological functions. CONCLUSION: Functional analysis with ArrayUnlock and IPA provided information related to functional differences with the three comparisons of the chicken infection leading to similar conclusions. ArrayUnlock let an improvement of the annotations of the chicken genome adding InterPro annotations to the data set file. IPA provides two powerful tools to understand the pathway analysis results: the networks and canonical pathways that showed several pathways related to an adaptative immune response.

19.
BMC Proc ; 3 Suppl 4: S5, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19615118

RESUMO

BACKGROUND: The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence) and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding) workshop focusing on post analysis of microarray data. The participating groups were provided with identical lists of microarray probes, including test statistics for three different contrasts, and the normalised log-ratios for each array, to be used as the starting point for interpreting the affected probes. The data originated from a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. RESULTS: Several conceptually different analytical approaches, using both commercial and public available software, were applied by the participating groups. The following tools were used: Ingenuity Pathway Analysis, MAPPFinder, LIMMA, GOstats, GOEAST, GOTM, Globaltest, TopGO, ArrayUnlock, Pathway Studio, GIST and AnnotationDbi. The main focus of the approaches was to utilise the relation between probes/genes and their gene ontology and pathways to interpret the affected probes/genes. The lack of a well-annotated chicken genome did though limit the possibilities to fully explore the tools. The main results from these analyses showed that the biological interpretation is highly dependent on the statistical method used but that some common biological conclusions could be reached. CONCLUSION: It is highly recommended to test different analytical methods on the same data set and compare the results to obtain a reliable biological interpretation of the affected genes in a DNA microarray experiment.

20.
Gene ; 408(1-2): 9-17, 2008 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-18006249

RESUMO

Integrins are heterodimeric cell adhesion molecules with major roles in a variety of biological processes ranging from cell migration to tissue organization, immune and non-immune defense mechanisms and oncogenic transformation. Members of the beta(3) integrin subfamily are composed of a beta(3) subunit (CD61) non-covalently associated with two alpha subunits, alpha(IIb) (CD41) and alpha(v) (CD51), to constitute a group of transmembrane glycoproteins that participate in many physiologically important events. This investigation has focused on the molecular characterization of the cDNA encoding the porcine beta(3) integrin subunit. The deduced 762-amino acid sequence was 93, 92, 91, 89, 79 and 73% homologous to human, dog, rabbit, mouse, chicken and Xenopus laevis CD61 protein, respectively. Porcine CD61 molecule shares many structural features with human CD61, including a region containing a metal ion-dependent adhesion site (MIDAS) folding into an I domain-like structure. Through PCR-SSCP analysis and sequencing, six polymorphic positions were detected in the cDNA sequence of porcine CD61, and their frequencies were observed from a collection of 47 pigs. Expression analysis was done at two different levels: expression of the CD61 mRNA by RT-PCR and localization of the protein by immunohistochemistry. Our results show that CD61 transcripts were detected mainly in platelets and hematopoietic tissues. The immunohistochemical tissue localization of CD61 protein by a specific monoclonal antibody against CD61 recombinant protein showed that CD61 was expressed on vascular and non-vascular smooth muscle, epithelium and myeloid cells, being undetectable in cells of the lymphoid lineage. Furthermore, pulmonary intravascular macrophages (PIM), a subpopulation of macrophages which seem to play an important role in blood clearance, expressed much more CD61 when compared to pulmonary alveolar macrophages (PAM). The knowledge of the structure and distribution of the CD61 provides insight into the physiological function of the porcine beta(3) integrins and should be of importance in understanding the role of this integrin family in biological processes.


Assuntos
Integrina beta3/genética , Suínos/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Clonagem Molecular , Imuno-Histoquímica , Integrina beta3/química , Integrina beta3/metabolismo , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Suínos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...