Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38735624

RESUMO

During the development of teleost fish, the sole nutrient source is the egg yolk. The yolk consists mostly of proteins and lipids, with only trace amounts of carbohydrates such as glycogen and glucose. However, past evidence in some fishes showed transient increase in glucose during development, which may have supported the development of the embryos. Recently, we found in zebrafish that the yolk syncytial layer (YSL), an extraembryonic tissue surrounding the yolk, undergoes gluconeogenesis. However, in other teleost species, the knowledge on such gluconeogenic functions during early development is lacking. In this study, we used a marine fish, the grass puffer (Takifugu niphobles) and assessed possible gluconeogenic functions of their YSL, to understand the difference or shared features of gluconeogenesis between these species. A liquid chromatography (LC) / mass spectrometry (MS) analysis revealed that glucose and glycogen content significantly increased in the grass puffer during development. Subsequent real-time PCR results showed that most of the genes involved in gluconeogenesis increased in segmentation stages and/or during hatching. Among these genes, many were expressed in the YSL and liver, as shown by in situ hybridization analysis. In addition, glycogen immunostaining revealed that this carbohydrate source was accumulated in many tissues at segmentation stage but exclusively in the liver in hatched individuals. Taken together, these results suggest that developing grass puffer undergoes gluconeogenesis and glycogen synthesis during development, and that gluconeogenic activity is shared in YSL of zebrafish and grass puffer.


Assuntos
Gluconeogênese , Glucose , Glicogênio , Takifugu , Animais , Takifugu/metabolismo , Takifugu/crescimento & desenvolvimento , Takifugu/genética , Glicogênio/metabolismo , Glucose/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , Embrião não Mamífero/metabolismo
2.
PNAS Nexus ; 3(4): pgae125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585339

RESUMO

Yolk-consuming (lecithotrophic) embryos of oviparous animals, such as those of fish, need to make do with the maternally derived yolk. However, in many cases, yolk possesses little carbohydrates and sugars, including glucose, the essential monosaccharide. Interestingly, increases in the glucose content were found in embryos of some teleost fishes; however, the origin of this glucose has been unknown. Unveiling new metabolic strategies in fish embryos has a potential for better aquaculture technologies. In the present study, using zebrafish, we assessed how these embryos obtain the glucose. We employed stable isotope (13C)-labeled substrates and injected them to the zebrafish embryos. Our liquid chromatography-mass spectrometry-based isotope tracking revealed that among all tested substrate, glutamate was most actively metabolized to produce glucose in the zebrafish embryos. Expression analysis for gluconeogenic genes found that many of these were expressed in the yolk syncytial layer (YSL), an extraembryonic tissue found in teleost fishes. Generation 0 (G0) knockout of pck2, a gene encoding the key enzyme for gluconeogenesis from Krebs cycle intermediates, reduced gluconeogenesis from glutamate, suggesting that this gene is responsible for gluconeogenesis from glutamate in the zebrafish embryos. These results showed that teleost YSL undergoes gluconeogenesis, likely contributing to the glucose supplementation to the embryos with limited glucose source. Since many other animal lineages lack YSL, further comparative analysis will be interesting.

3.
J Biochem ; 175(1): 25-34, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37812399

RESUMO

Akanes are fluorescent proteins that have several fluorescence maxima. In this report, Akane1 and Akane3 from Scleronephthya gracillima were selected, successfully overexpressed in Escherichia coli and purified by affinity chromatography. Fluorescence spectra of the recombinant Akanes matured in darkness, or ambient light were found to have several fluorescence peaks. SDS-PAGE analysis revealed that Akanes matured in ambient light have two fragments. MS/MS analysis of Akanes digested with trypsin showed that the cleavage site is the same as observed for the photoconvertible fluorescent protein Kaede. The differences between the calculated masses from the amino acid sequence of Akane1 and the measured masses of Akane1 fragments obtained under ambient light coincided with those of Kaede. In contrast, a mass difference between the measured N-terminal Akane3 fragment and the calculated mass indicated that Akane3 is modified in the N-terminal region. These results indicate that numerous peaks in the fluorescent spectra of Akanes partly arise from isoproteins of Akanes and photoconversion. Photoconversion of Akane1 caused a fluorescence change from green to red, which was also observed for Akane3; however, the fluorescent intensity decreased dramatically when compared with that of Akane3.


Assuntos
Luz , Espectrometria de Massas em Tandem , Proteínas Luminescentes/genética , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Sequência de Aminoácidos , Proteínas de Fluorescência Verde/química
4.
Mar Biotechnol (NY) ; 24(3): 524-530, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460469

RESUMO

The overload of nutrients of anthropogenic origin, including phosphate, onto coastal waters has been reported to have detrimental effects on corals. However, to the best of our knowledge, the phosphate concentration threshold for inhibiting coral calcification is unclear owing to a lack of information on the molecular mechanisms involved in the inhibitory effect of phosphate. Therefore, in this study, we prepared a new phosphate analogue, fluorescein-4-isothiocyanate (FITC)-labelled alendronic acid (FITC-AA), from commercially available reagents and used it as a novel probe to demonstrate its transfer pathway from ambient seawater into Acropora digitifera. When the juveniles at 1 d post-settlement were treated with FITC-AA in a laboratory tank, this phosphate analogue was found in the subcalicoblastic extracellular calcifying medium (SCM) and was absorbed on the basal plate in the juveniles within a few minutes. When the juveniles bear zooxanthellae at 3 months post-settlement, FITC-AA was observed on the corallite walls within a few minutes after adding ambient seawater. We concluded that FITC-AA in ambient seawater was transferred via a paracellular pathway to SCM and then absorbed on the coral CaCO3 skeletons because FITC-AA with a high polarity group cannot permeate through cell membranes.


Assuntos
Antozoários , Animais , Antozoários/metabolismo , Calcificação Fisiológica , Recifes de Corais , Fluoresceína/metabolismo , Fluoresceína/farmacologia , Fluoresceína-5-Isotiocianato , Concentração de Íons de Hidrogênio , Fosfatos , Água do Mar , Esqueleto
5.
PLoS One ; 16(6): e0252514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34061893

RESUMO

Most corals acquire symbiodiniacean symbionts from the surrounding environment to initiate symbiosis. The cell densities of Symbiodiniaceae in the environment are usually low, and mechanisms may exist by which new coral generations attract suitable endosymbionts. Phototaxis of suitable symbiodiniacean cells toward green fluorescence in corals has been proposed as one such mechanism. In the present study, we observed the phototaxis action wavelength of various strains of Symbiodiniaceae and the fluorescence spectra of aposymbiotic Acropora tenuis larvae at the time of endosymbiont uptake. The phototaxis patterns varied among the Symbiodiniaceae species and "native" endosymbionts-commonly found in Acropora juveniles present in natural environments; that is, Symbiodinium microadriaticum was attracted to blue light rather than to green light. Another native endosymbiont, Durusdinium trenchii, showed no phototaxis specific to any wavelength. Although the larvae exhibited green and broad orange fluorescence under blue-violet excitation light, the maximum green fluorescence peak did not coincide with that of the phototaxis action spectrum of S. microadriaticum. Rather, around the peak wavelength of larval green fluorescence, this native endosymbiont showed slightly negative phototaxis, suggesting that the green fluorescence of A. tenuis larvae may not play a role in the initial attraction of native endosymbionts. Conversely, broad blue larval fluorescence under UV-A excitation covered the maximum phototaxis action wavelength of S. microadriaticum. We also conducted infection tests using native endosymbionts and aposymbiotic larvae under red LED light that does not excite visible larval fluorescence. Almost all larvae failed to acquire S. microadriaticum cells, whereas D. trenchii cells were acquired by larvae even under red illumination. Thus, attraction mechanisms other than visible fluorescence might exist, at least in the case of D. trenchii. Our results suggest that further investigation and discussion, not limited to green fluorescence, would be required to elucidate the initial attraction mechanisms.


Assuntos
Alveolados/fisiologia , Antozoários/fisiologia , Fluorescência , Larva/fisiologia , Simbiose/fisiologia , Animais , Recifes de Corais , Dinoflagellida/fisiologia , Fototaxia/fisiologia , Raios Ultravioleta
6.
R Soc Open Sci ; 8(3): 201214, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33959313

RESUMO

To test the hypothesis that terrestrial runoff affects the functions of calcareous sediments in coral reefs and hampers the development of corals, we analysed calcareous sediments with different levels of bound phosphate, collected from reef areas of Okinawajima, Japan. We confirmed that phosphate bound to calcareous sediments was readily released into ambient seawater, resulting in much higher concentrations of phosphorous in seawater from heavily polluted areas (4.3-19.0 µM as compared with less than 0.096 µM in natural ambient seawater). Additionally, we examined the effect of phosphate released from calcareous sediments on the development of Acropora digitifera coral juveniles. We found that high phosphate concentrations in seawater clearly inhibit the skeletal formation of coral juveniles. Our results demonstrate that calcareous sediments in reef areas play a crucial role in mediating the impact of terrestrial runoff on corals by storing and releasing phosphate in seawater.

7.
Mar Drugs ; 19(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799701

RESUMO

Many corals establish symbiosis with Symbiodiniaceae cells from surrounding environments, but very few Symbiodiniaceae cells exist in the water column. Given that the N-acetyl-d-glucosamine-binding lectin ActL attracts Symbiodiniaceae cells, we hypothesized that corals must attract Symbiodiniaceae cells using ActL to acquire them. Anti-ActL antibody inhibited acquisition of Symbiodiniaceae cells, and rearing seawater for juvenile Acropora tenuis contained ActL, suggesting that juvenile A. tenuis discharge ActL to attract these cells. Among eight Symbiodiniaceae cultured strains, ActL attracted NBRC102920 (Symbiodinium tridacnidorum) most strongly followed by CS-161 (Symbiodinium tridacnidorum), CCMP2556 (Durusdinium trenchii), and CCMP1633 (Breviolum sp.); however, it did not attract GTP-A6-Sy (Symbiodinium natans), CCMP421 (Effrenium voratum), FKM0207 (Fugacium sp.), and CS-156 (Fugacium sp.). Juvenile polyps of A. tenuis acquired limited Symbiodiniaceae cell strains, and the number of acquired Symbiodiniaceae cells in a polyp also differed from each other. The number of Symbiodiniaceae cells acquired by juvenile polyps of A. tenuis was correlated with the ActL chemotactic activity. Thus, ActL could be used to attract select Symbiodiniaceae cells and help Symbiodiniaceae cell acquisition in juvenile polyps of A. tenuis, facilitating establishment of symbiosis between A. tenuis and Symbiodiniaceae cells.


Assuntos
Acetilglucosamina/metabolismo , Antozoários/metabolismo , Dinoflagellida/metabolismo , Lectinas/metabolismo , Animais , Técnicas de Cultura de Células , Dinoflagellida/citologia , Simbiose
8.
Methods Mol Biol ; 2132: 369-378, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32306344

RESUMO

Symbiosis with zooxanthellae is essential for survival of corals. Using a bioassay, we report the H-type lectin SLL-2 purified from the octocoral Sinularia lochmodes to restrict zooxanthellae form to spherical cells. However, the factor for initiating or maintaining a symbiotic relationship between a host and zooxanthellae has not been found in many corals. This bioassay is useful for evaluating the role of a lectin as a symbiosis-related factor.


Assuntos
Antozoários/parasitologia , Dinoflagellida/efeitos dos fármacos , Lectinas/farmacologia , Animais , Antozoários/metabolismo , Bioensaio , Dinoflagellida/fisiologia , Lectinas/isolamento & purificação , Simbiose
9.
Mar Drugs ; 17(4)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965587

RESUMO

A novel protein, soritesidine (SOR) with potent toxicity was isolated from the marine sponge Spongosorites sp. SOR exhibited wide range of toxicities over various organisms and cells including brine shrimp (Artemia salina) larvae, sea hare (Aplysia kurodai) eggs, mice, and cultured mammalian cells. Toxicities of SOR were extraordinary potent. It killed mice at 5 ng/mouse after intracerebroventricular (i.c.v.) injection, and brine shrimp and at 0.34 µg/mL. Cytotoxicity for cultured mammalian cancer cell lines against HeLa and L1210 cells were determined to be 0.062 and 12.11 ng/mL, respectively. The SOR-containing fraction cleaved plasmid DNA in a metal ion dependent manner showing genotoxicity of SOR. Purified SOR exhibited molecular weight of 108.7 kDa in MALDI-TOF MS data and isoelectric point of approximately 4.5. N-terminal amino acid sequence up to the 25th residue was determined by Edman degradation. Internal amino acid sequences for fifteen peptides isolated from the enzyme digest of SOR were also determined. None of those amino acid sequences showed similarity to existing proteins, suggesting that SOR is a new proteinous toxin.


Assuntos
Toxinas Marinhas/toxicidade , Poríferos , Sequência de Aminoácidos , Animais , Aplysia/efeitos dos fármacos , Artemia/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Bioensaio/métodos , Linhagem Celular Tumoral , Humanos , Japão , Larva/efeitos dos fármacos , Masculino , Toxinas Marinhas/administração & dosagem , Toxinas Marinhas/química , Toxinas Marinhas/isolamento & purificação , Camundongos , Peso Molecular , Testes de Mutagenicidade/métodos
10.
Mar Biotechnol (NY) ; 21(2): 291-300, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30747372

RESUMO

Coral reef degradation due to various local stresses, such as nutrient enrichment and terrestrial run-off into coastal waters, is an increasing global concern. Inorganic phosphates have been considered to possibly inhibit skeleton formation in corals. Despite many studies available on the effects of nutrients on corals, a clear consensus on how nutrients exert deteriorative effects on corals has not been established satisfactorily. In this study, we examined the effects of phosphates and nitrates on in vitro aragonite CaCO3 formation by using biogenic polyamines and in vivo aragonite formation in the skeleton of juvenile Acropora digitifera corals. We showed that the phosphates at similar concentrations clearly inhibited both in vitro and in vivo CaCO3 formation. In contrast, nitrates inhibited neither in vitro aragonite CaCO3 formation nor in vivo aragonite formation in juvenile coral skeleton. Furthermore, our findings showed that inhibition of coral skeleton formation was due to absorption of phosphate on the skeleton, which inorganically inhibited normal development of juvenile coral skeleton.


Assuntos
Antozoários/efeitos dos fármacos , Antozoários/crescimento & desenvolvimento , Carbonato de Cálcio/metabolismo , Fosfatos/efeitos adversos , Animais , Calcificação Fisiológica/efeitos dos fármacos , Carbonato de Cálcio/química , Nitratos/efeitos adversos , Água do Mar/química , Poluentes Químicos da Água/efeitos adversos
11.
Sci Rep ; 8(1): 17724, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30531865

RESUMO

Biogenic polyamines are involved in a wide range of plant cellular processes, including cell division, morphogenesis and stress responses. However, the exact roles of biogenic polyamines are not well understood. We recently reported that biogenic polyamines that have multiple amino groups can react with CO2 and accelerate calcium carbonate formation in seawater. The ability of biogenic polyamines to capture atmospheric CO2 prompted us to examine their roles in photosynthesis. Here, we demonstrated that atmospheric CO2 captured by biogenic polyamines is a candidate substrate for the carboxylation reaction of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), which is an enzyme involved in the first major step of carbon fixation during photosynthesis, and that biogenic polyamines can accelerate the carboxylation reaction of this enzyme because of their specific affinity for CO2. Moreover, the results of our nuclear magnetic resonance (NMR) analysis showed that putrescine, which is the most common biogenic polyamine, reacts with atmospheric CO2 and promotes the formation of carbamate derivatives and bicarbonate in aqueous environments. A sufficient amount of CO2 is well known to be produced by carbonic anhydrase from bicarbonate in vivo. The present study indicates that CO2 would be also produced by the equilibrium reaction from carbonate produced by biogenic polyamines and would be used as a substrate of Rubisco, too. Our results may suggest a new photosynthetic research strategy that involves CO2-concentrating mechanisms and also possibly constitutes a potential tool for reducing atmospheric CO2 levels and, consequently, global warming.

12.
Gene ; 665: 149-154, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29709640

RESUMO

Ofunato Bay, in Japan, is the home of buoy-and-rope-type oyster aquaculture activities. Since the oysters filter suspended materials and excrete organic matters into the seawater, bacterial communities residing in its vicinity may show dynamic changes depending on the oyster culture activities. We employed a shotgun metagenomic technique to study bacterial communities near oyster aquaculture facilities at the center of the bay (KSt. 2) and compared the results with those of two other localities far from the station, one to the northeast (innermost bay, KSt. 1) and the other to the southwest (bay entrance, KSt. 3). Seawater samples were collected every month from January to December 2015 from the surface (1 m) and deeper (8 or 10 m) layers of the three locations, and the sequentially filtered fraction on 0.2-µm membranes was sequenced on an Illumina MiSeq system. The acquired reads were uploaded to MG-RAST for KEGG functional abundance analysis, while taxonomic analyses at the phylum and genus levels were performed using MEGAN after parsing the BLAST output. Discrimination analyses were then performed using the ROC-AUC value of the cross validation, targeting the depth (shallow or deep), locality [(KSt. 1 + KSt. 2) vs. KSt 3; (KSt. 1 + KSt. 3) vs. KSt. 2 or the (KSt. 2 + KSt. 3) vs. KSt. 1] and seasonality (12 months). The matrix discrimination analysis on the adjacent 2 continuous seasons by ROC-AUC, which was based on the datasets that originated from different depths, localities and months, showed the strongest discrimination signal on the taxonomy matrix at the phylum level for the datasets from July to August compared with those from September to June, while the KEGG matrix showed the strongest signal for the datasets from March to June compared with those from July to February. Then, the locality combination was subjected to the same ROC-AUC discrimination analysis, resulting in significant differences between KSt. 2 and KSt. 1 + KSt. 3 on the KEGG matrix. These results suggest that aquaculture activities markedly affect bacterial functions.


Assuntos
Bactérias , Biodiversidade , Metagenoma , Consórcios Microbianos/fisiologia , Ostreidae/microbiologia , Estações do Ano , Animais , Aquicultura , Bactérias/genética , Bactérias/metabolismo
13.
Gene ; 665: 192-200, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29705124

RESUMO

The Ofunato Bay in Iwate Prefecture, Japan is a deep coastal bay located at the center of the Sanriku Rias Coast and considered an economically and environmentally important asset. Here, we describe the first whole genome sequencing (WGS) study on the microbial community of the bay, where surface water samples were collected from three stations along its length to cover the entire bay; we preliminarily sequenced a 0.2 µm filter fraction among sequentially size-fractionated samples of 20.0, 5.0, 0.8 and 0.2 µm filters, targeting the free-living fraction only. From the 0.27-0.34 Gb WGS library, 0.9 × 106-1.2 × 106 reads from three sampling stations revealed 29 bacterial phyla (~80% of assigned reads), 3 archaeal phyla (~4%) and 59 eukaryotic phyla (~15%). Microbial diversity obtained from the WGS approach was compared with 16S rRNA gene results by mining WGS metagenomes, and we found similar estimates. The most frequently recovered bacterial sequences were Proteobacteria, predominantly comprised of 18.0-19.6% Planktomarina (Family Rhodobacteraceae) and 13.7-17.5% Candidatus Pelagibacter (Family Pelagibacterales). Other dominant bacterial genera, including Polaribacter (3.5-6.1%), Flavobacterium (1.8-2.6%), Sphingobacterium (1.4-1.6%) and Cellulophaga (1.4-2.0%), were members of Bacteroidetes and likely associated with the degradation and turnover of organic matter. The Marine Group I Archaea Nitrosopumilus was also detected. Remarkably, eukaryotic green alga Bathycoccus, Ostreococcus and Micromonas accounted for 8.8-15.2%, 3.6-4.9% and 2.1-3.1% of total read counts, respectively, highlighting their potential roles in the phytoplankton bloom after winter mixing.


Assuntos
Archaea , Bactérias , Baías/microbiologia , Consórcios Microbianos/fisiologia , Estações do Ano , Microbiologia da Água , Archaea/classificação , Archaea/genética , Archaea/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Metagenômica
14.
Gene ; 665: 185-191, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29705129

RESUMO

The Ofunato Bay in the northeastern Pacific Ocean area of Japan possesses the highest biodiversity of marine organisms in the world and has attracted much attention due to its economic and environmental importance. We report here a shotgun metagenomic analysis of the year-round variation in free-living bacterioplankton collected across the entire length of the bay. Phylogenetic differences among spring, summer, autumn and winter bacterioplankton suggested that members of Proteobacteria tended to decrease at high water temperatures and increase at low temperatures. It was revealed that Candidatus Pelagibacter varied seasonally, reaching as much as 60% of all sequences at the genus level in the surface waters during winter. This increase was more evident in the deeper waters, where they reached up to 75%. The relative abundance of Planktomarina also rose during winter and fell during summer. A significant component of the winter bacterioplankton community was Archaea (mainly represented by Nitrosopumilus), as their relative abundance was very low during spring and summer but high during winter. In contrast, Actinobacteria and Cyanobacteria appeared to be higher in abundance during high-temperature periods. It was also revealed that Bacteroidetes constituted a significant component of the summer bacterioplankton community, being the second largest bacterial phylum detected in the Ofunato Bay. Its members, notably Polaribacter and Flavobacterium, were found to be high in abundance during spring and summer, particularly in the surface waters. Principal component analysis and hierarchal clustering analyses showed that the bacterial communities in the Ofunato Bay changed seasonally, likely caused by the levels of organic matter, which would be deeply mixed with surface runoff in the winter.


Assuntos
Archaea , Bactérias , Baías/microbiologia , Consórcios Microbianos/fisiologia , Plâncton , Estações do Ano , Microbiologia da Água , Archaea/genética , Archaea/crescimento & desenvolvimento , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Plâncton/genética , Plâncton/crescimento & desenvolvimento
15.
Gene ; 665: 174-184, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29705130

RESUMO

Ofunato Bay is located in the northeastern Pacific Ocean area of Japan, and it has the highest biodiversity of marine organisms in the world, primarily due to tidal influences from the cold Oyashio and warm Kuroshio Currents. Our previous results from performing shotgun metagenomics indicated that Candidatus Pelagibacter ubique and Planktomarina temperata were the dominant bacteria (Reza et al., 2018a, 2018b). These bacteria are reportedly able to catabolize dimethylsulfoniopropionate (DMSP) produced from phytoplankton into dimethyl sulfide (DMS) or methanethiol (MeSH). This study was focused on seasonal changes in the abundances of bacterial genes (dddP, dmdA) related to DMSP catabolism in the seawater of Ofunato Bay by BLAST+ analysis using shotgun metagenomic datasets. We found seasonal changes among the Candidatus Pelagibacter ubique strains, including those of the HTCC1062 type and the Red Sea type. A good correlation was observed between the chlorophyll a concentrations and the abundances of the catabolic genes, suggesting that the bacteria directly interact with phytoplankton in the marine material cycle system and play important roles in producing DMS and MeSH from DMSP as signaling molecules for the possible formation of the scent of the tidewater or as fish attractants.


Assuntos
Bactérias , Baías/microbiologia , Genes Bacterianos , Estações do Ano , Água do Mar/microbiologia , Compostos de Sulfônio/metabolismo , Microbiologia da Água , Animais , Bactérias/genética , Bactérias/metabolismo , Metagenômica/métodos
16.
J Exp Biol ; 221(Pt 11)2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29674374

RESUMO

Shrimps inhabiting coastal waters can survive in a wide range of salinity. However, the molecular mechanisms involved in their acclimation to different environmental salinities have remained largely unknown. In the present study, we acclimated kuruma shrimp (Marsupenaeus japonicus) at 1.7%, 3.4% and 4.0% salinities. After acclimating for 6, 12, 24 and 72 h, we determined free amino acid concentrations in their abdominal muscle, and performed RNA sequencing analysis on this muscle. The concentrations of free amino acids were clearly altered depending on salinity after 24 h of acclimation. Glutamine and alanine concentrations were markedly increased following the increase of salinity. In association with such changes, many genes related to amino acid metabolism changed their expression levels. In particular, the increase of the expression level of the gene encoding glutamate-ammonia ligase, which functions in glutamine metabolism, appeared to be associated with the increased glutamine concentration at high salinity. Furthermore, the increased alanine concentration at high salinity was likely associated with the decrease in the expression levels of the the gene encoding alanine-glyoxylate transaminase. Thus, there is a possibility that changes in the concentration of free amino acids for osmoregulation in kuruma shrimp are regulated by changes in the expression levels of genes related to amino acid metabolism.


Assuntos
Aminoácidos/metabolismo , Penaeidae/fisiologia , Salinidade , Transcriptoma/fisiologia , Músculos Abdominais/metabolismo , Aclimatação , Animais , Penaeidae/genética
17.
J Vet Med Sci ; 80(5): 802-809, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29553063

RESUMO

Antisperm antibodies potentially inhibit sperm functions causing the sterility in humans and experimentally treated animals. However, there is no information about antisperm antibodies emerging spontaneously in wildlife. In this study, we searched for the sperm-reactive antibodies, spontaneously produced in wild sika deer (Cervus nippon), and identified the sperm antigens. We collected 529 fecal masses of sika deer in Japanese cities, from which we extracted the mucosal antibodies to test them for reactivities to deer sperm proteins by ELISA. Two of the extracts contained IgAs that were highly reactive to the sperm proteins. The molecular weights of the active IgAs, partially purified by DEAE-sephadex A-50, were estimated at more than 100 kDa, suggesting that the IgAs evaded drastic digestion in the gastrointestinal tract. Two-dimensional electrophoresis and immunoblotting detected three major antigens, and the following LC-MS/MS analysis identified them as alpha-enolase, phosphoglycerate kinase 2 and acrosin-binding protein. The antibodies were cross-reactive to a recombinant human acrosin-binding protein. To our knowledge, this is the first research to find that the sperm-reactive antibodies are produced spontaneously in wildlife and they recognize a common antigen found in humans.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Cervos/imunologia , Espermatozoides/imunologia , Animais , Animais Selvagens , Autoanticorpos/isolamento & purificação , Reações Cruzadas , Fezes , Fertilidade/imunologia , Humanos , Mucosa Intestinal/imunologia , Masculino
18.
Mar Drugs ; 15(6)2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28574432

RESUMO

Egg lectins occur in a variety of animals ranging from mollusks to vertebrates. A few examples of molluscan egg lectins have been reported, including that of the sea hare Aplysia kurodai; however, their biological functions in the egg remain unclarified. We report the isolation, determination of primary structure, and possible functions of A.kurodai lectin (AKL) from the egg mass of A. kurodai. We obtained AKL as an inseparable mixture of isoproteins with a relative molecular mass of approximately 32 kDa by affinity purification. The hemagglutinating activity of AKL against rabbit erythrocytes was inhibited most potently by galacturonic acid and moderately by xylose. Nucleotide sequencing of corresponding cDNA obtained by rapid amplification of cDNA ends (RACE) allowed us to deduce complete amino acid sequences. The mature polypeptides consisted of 218- or 219-amino acids with three repeated domains. The amino acid sequence had similarities to hypothetical proteins of Aplysia spp., or domain DUF3011 of uncharacterized bacterial proteins. AKL is the first member of the DUF3011 family whose function, carbohydrate recognition, was revealed. Treatment of the egg with galacturonic acid, an AKL sugar inhibitor, resulted in deformation of the veliger larvae, suggesting that AKL is involved in organogenesis in the developmental stage of A. kurodai.


Assuntos
Aplysia/genética , Aplysia/metabolismo , Lebres/genética , Lebres/metabolismo , Ácidos Hexurônicos/metabolismo , Lectinas/genética , Lectinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Complementar/genética , Eritrócitos/metabolismo , Coelhos
19.
Mol Reprod Dev ; 84(7): 614-625, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28462533

RESUMO

Acrosomal vesicles (AVs) of sperm undergo exocytosis during the acrosome reaction, which is immediately followed by the actin polymerization-dependent extension of an acrosomal process (AP) in echinoderm sperm. In the starfish Asterias amurensis, a large proteoglycan, acrosome reaction-inducing substance (ARIS), together with asteroidal sperm-activating peptide (asterosap) and/or cofactor for ARIS, induces the acrosome reaction. Asterosap induces a transient elevation of intracellular cGMP and Ca2+ levels, and, together with ARIS, causes a sustained increase in intracellular cAMP and Ca2+ . Yet, the contribution of signaling molecules downstream of cAMP and Ca2+ in inducing AV exocytosis and AP extension remain unknown. A modified acrosome reaction assay was used here to differentiate between AV exocytosis and AP extension in starfish sperm, leading to the discovery that Protein kinase A (PKA) inhibitors block AP extension but not AV exocytosis. Additionally, PKA-mediated phosphorylation of target proteins occurs, and these substrates localize at the base of the AP, demonstrating that PKA activation regulates an AP extension step during the acrosome reaction. The major PKA substrate was further identified, from A. amurensis and Asterias forbesi sperm, as a novel protein containing six PKA phosphorylation motifs. This protein, referred to as PKAS1, likely plays a key role in AP actin polymerization during the acrosome reaction.


Assuntos
Reação Acrossômica/fisiologia , Acrossomo/enzimologia , Asterias/enzimologia , Sinalização do Cálcio/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Animais , Cálcio/metabolismo , GMP Cíclico/metabolismo , Masculino
20.
Glycobiology ; 27(8): 696-700, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28510705

RESUMO

A symbiosis-related lectin, SLL-2, from the octocoral Sinularia lochmodes, distributes densely on the cell surface of microalgae, Symbiodinium sp., an endosymbiotic dinoflagellate of the coral, and is also shown to be a chemical cue that transforms dinoflagellates into a nonmotile (coccoid) symbiotic state. SLL-2 binds to the sugar chain of the molecule similar to Forssman antigen pentasaccharide (GalNAcα1-3GalNAcß1-3 Galα1-4 Galß1-4Glc) on the surface of microalgae with high affinity. Here we report the crystal structure of the complex between SLL-2 and Forssman antigen tetrasaccharide (GalNAcα1-3GalNAcß1-3 Galα1-4 Galß) at 3.4 Å resolution. In an asymmetric unit of the crystal, there are two hexameric molecules with totally 12 sugar recognition sites. At 9 in 12 sites, the first and second saccharides of the Forssman antigen tetrasaccharide bind directly to galactopyranoside binding site of SLL-2, whereas the third and fourth saccharides have no interaction with the SLL-2 hexameric molecule that binds the first saccharide. The sugar chain bends at α-1,4-glycosidic linkage between the third and fourth saccharides toward the position that we defined as a pyranoside binding site in the crystal structure of the complex between SLL-2 and GalNAc. The structure allowed us to suggest a possible binding mode of the Forssman antigen pentasaccharide to SLL-2. These observations support our hypothesis that the binding of SLL-2 to the cell surface sugars of zooxanthella in a unique manner might trigger some physiological changes of the cell to adapt symbiosis with the host coral.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...