RESUMO
The Chalan ravine is a deep bed creek that runs through Licto (Ecuador). It has been known since the 19th century for the abundance of paleontological remains of Pleiostocene fauna and megafauna in its profiles, where entire remains of mastodons were recovered. The abundance of these remains made one of the high areas, where marmites exist in different forms, was traditionally considered as mastodon footprints. Archaeological prospecting, geographic information system (GIS) technology, unmanned aerial vehicle (UAV), photogrammetry, and the geological study of the place, allowed us to determine that the mythical traces of mastodon were marmites made by the water erosion produced in the same ravine over time.
Assuntos
Mastodontes , Animais , Equador , Meio Ambiente , Tecnologia , ÁguaRESUMO
Protecting soil fertility represents a fundamental effort of sustainable development. In this study we investigate how different altitudes affect soil microbial biomass carbon (MBC) and soil organic carbon (SOC), and their ratio, MBC/SOC in Hyperalic Alisol. MBC and SOC are well established and widely accepted microbial quotients in soil science. Our work hypothesis was that a decrease in MBC and SOC should be observed at higher altitudes. This initial assumption has been verified by our measurements, being attributed to the increase in MBC and SOC at low altitudes. Our approach should contribute to the better understanding of MBC and SOC distribution in soil and changes in MBC/SOC at various altitudes in the region.
Assuntos
Altitude , Biomassa , Carbono/análise , Microbiologia do Solo , Solo/química , EquadorRESUMO
Background: Air pollution is one of the biggest problems in the world, and it is generated by industrial production, vehicular flow and use of fossil fuels, leaving aside other important emission sources such as vegetation. The aim of this research is to quantify the emissions of natural volatile organic compounds produced by the forest species: Eucalyptus globulus L., Pinus radiata and Alnus acuminata in Riobamba, Ecuador. Methods: Identification of plant coverings in the years 2014 and 2017was performed using geographic information systems tools, complemented with the application of the Guenther model for the calculation of monoterpenes and other organic volatile compounds; thus, to analyze the relationship between meteorological variables and concentrations of volatile organic compounds and nitrogen dioxide per species. Results: Mathematical calculation of emissions in Riobamba showed that Eucalyptus globulus L. registered higher emissions in the years 2014-2017, followed by Pinus radiata and Alnus acuminata. These emissions are due to the vegetation cover covering each species. The analysis of volatile organic compounds in forest plantations in air is directly related to the emissions represented in the environment and correlated with the meteorological variables of temperature, global solar radiation and wind velocity. The proposed method manages to estimate concentrations of monoterpenes and volatile organic compounds for the two examined seasons, presenting the influence of the species introduced in this study such as Eucalyptus globulus L. and Pinus radiata, with a reduction in their emissions (less area found in the year 2017, with respect to 2014). However, the emission of Alnus acuminata can be quantified only in 2017, since in 2014 no records of this species were found. Conclusions: Volatile organic compound concentrations in the air are directly related to the emissions represented spatially and correlated with the meteorological variables of temperature, global solar radiation and wind velocity.