Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nanotoxicology ; 10(6): 720-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26581431

RESUMO

Nanoparticle (NP) pharmacokinetics and biological effects are influenced by many factors, especially surface physicochemical properties. We assessed the effects of an amorphous silica coating on the fate of zinc after intravenous (IV) injection of neutron activated uncoated (65)ZnO or silica-coated (65)ZnO NPs in male Wistar Han rats. Groups of IV-injected rats were sequentially euthanized, and 18 tissues were collected and analyzed for (65)Zn radioactivity. The protein coronas on each ZnO NP after incubation in rat plasma were analyzed by SDS-PAGE gel electrophoresis and mass spectrometry of selected gel bands. Plasma clearance for both NPs was biphasic with rapid initial and slower terminal clearance rates. Half-lives of plasma clearance of silica-coated (65)ZnO were shorter (initial - <1 min; terminal - 2.5 min) than uncoated (65)ZnO (initial - 1.9 min; terminal - 38 min). Interestingly, the silica-coated (65)ZnO group had higher (65)Zn associated with red blood cells and higher initial uptake in the liver. The (65)Zn concentrations in all the other tissues were significantly lower in the silica-coated than uncoated groups. We also found that the protein corona formed on silica-coated ZnO NPs had higher amounts of plasma proteins, particularly albumin, transferrin, A1 inhibitor 3, α-2-hs-glycoprotein, apoprotein E and α-1 antitrypsin. Surface modification with amorphous silica alters the protein corona, agglomerate size, and zeta potential of ZnO NPs, which in turn influences ZnO biokinetic behavior in the circulation. This emphasizes the critical role of the protein corona in the biokinetics, toxicology and nanomedical applications of NPs.


Assuntos
Proteínas Sanguíneas/metabolismo , Nanopartículas/química , Dióxido de Silício/sangue , Dióxido de Silício/química , Óxido de Zinco/sangue , Óxido de Zinco/química , Animais , Eletroforese em Gel de Poliacrilamida , Cinética , Masculino , Taxa de Depuração Metabólica , Nanopartículas/análise , Coroa de Proteína/metabolismo , Ratos , Ratos Wistar , Propriedades de Superfície
3.
Part Fibre Toxicol ; 12: 31, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26458946

RESUMO

BACKGROUND: The physicochemical properties of nanoparticles (NPs) influence their biological outcomes. METHODS: We assessed the effects of an amorphous silica coating on the pharmacokinetics and pulmonary effects of CeO2 NPs following intratracheal (IT) instillation, gavage and intravenous injection in rats. Uncoated and silica-coated CeO2 NPs were generated by flame spray pyrolysis and later neutron-activated. These radioactive NPs were IT-instilled, gavaged, or intravenously (IV) injected in rats. Animals were analyzed over 28 days post-IT, 7 days post-gavage and 2 days post-injection. RESULTS: Our data indicate that silica coating caused more but transient lung inflammation compared to uncoated CeO2. The transient inflammation of silica-coated CeO2 was accompanied by its enhanced clearance. Then, from 7 to 28 days, clearance was similar although significantly more (141)Ce from silica-coated (35%) was cleared than from uncoated (19%) (141)CeO2 in 28 days. The protein coronas of the two NPs were significantly different when they were incubated with alveolar lining fluid. Despite more rapid clearance from the lungs, the extrapulmonary (141)Ce from silica-coated (141)CeO2 was still minimal (<1%) although lower than from uncoated (141)CeO2 NPs. Post-gavage, nearly 100% of both NPs were excreted in the feces consistent with very low gut absorption. Both IV-injected (141)CeO2 NP types were primarily retained in the liver and spleen. The silica coating significantly altered the plasma protein corona composition and enhanced retention of (141)Ce in other organs except the liver. CONCLUSION: We conclude that silica coating of nanoceria alters the biodistribution of cerium likely due to modifications in protein corona formation after IT and IV administration.


Assuntos
Cério/química , Nanopartículas Metálicas , Dióxido de Silício/química , Animais , Cinética , Microscopia Eletrônica , Ratos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...