Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(9): 373, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127787

RESUMO

Adherence to both cellular and abiotic surfaces is a crucial step in the interaction of bacterial pathogens and commensals with their hosts. Bacterial surface structures known as fimbriae or pili play a fundamental role in the early colonization stages by providing specificity or tropism. Among the various fimbrial families, the chaperone-usher family has been extensively studied due to its ubiquity, diversity, and abundance. This family is named after the components that facilitate their biogenesis. Type 1 fimbria and P pilus, two chaperone-usher fimbriae associated with urinary tract infections, have been thoroughly investigated and serve as prototypes that have laid the foundations for understanding the biogenesis of this fimbrial family. Additionally, the study of the mechanisms regulating their expression has also been a subject of great interest, revealing that the regulation of the expression of the genes encoding these structures is a complex and diverse process, involving both common global regulators and those specific to each operon.


Assuntos
Proteínas de Fímbrias , Fímbrias Bacterianas , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Aderência Bacteriana , Óperon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA