Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Toxicol ; 24(5): 435-471, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555547

RESUMO

Cigarette smoking is positively and robustly associated with cardiovascular disease (CVD), including hypertension, atherosclerosis, cardiac arrhythmias, stroke, thromboembolism, myocardial infarctions, and heart failure. However, after more than a decade of ENDS presence in the U.S. marketplace, uncertainty persists regarding the long-term health consequences of ENDS use for CVD. New approach methods (NAMs) in the field of toxicology are being developed to enhance rapid prediction of human health hazards. Recent technical advances can now consider impact of biological factors such as sex and race/ethnicity, permitting application of NAMs findings to health equity and environmental justice issues. This has been the case for hazard assessments of drugs and environmental chemicals in areas such as cardiovascular, respiratory, and developmental toxicity. Despite these advances, a shortage of widely accepted methodologies to predict the impact of ENDS use on human health slows the application of regulatory oversight and the protection of public health. Minimizing the time between the emergence of risk (e.g., ENDS use) and the administration of well-founded regulatory policy requires thoughtful consideration of the currently available sources of data, their applicability to the prediction of health outcomes, and whether these available data streams are enough to support an actionable decision. This challenge forms the basis of this white paper on how best to reveal potential toxicities of ENDS use in the human cardiovascular system-a primary target of conventional tobacco smoking. We identify current approaches used to evaluate the impacts of tobacco on cardiovascular health, in particular emerging techniques that replace, reduce, and refine slower and more costly animal models with NAMs platforms that can be applied to tobacco regulatory science. The limitations of these emerging platforms are addressed, and systems biology approaches to close the knowledge gap between traditional models and NAMs are proposed. It is hoped that these suggestions and their adoption within the greater scientific community will result in fresh data streams that will support and enhance the scientific evaluation and subsequent decision-making of tobacco regulatory agencies worldwide.


Assuntos
Doenças Cardiovasculares , Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Humanos , Medição de Risco , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/prevenção & controle , Animais , Vaping/efeitos adversos , Vaping/tendências , Fatores de Risco , Nicotina/efeitos adversos , Nicotina/administração & dosagem , Agonistas Nicotínicos/efeitos adversos , Agonistas Nicotínicos/administração & dosagem , Agonistas Nicotínicos/toxicidade , Qualidade de Produtos para o Consumidor , Sistema Cardiovascular/efeitos dos fármacos , Cardiotoxicidade , Fatores de Risco de Doenças Cardíacas , Vapor do Cigarro Eletrônico/efeitos adversos
2.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240038

RESUMO

Exposure to commonly used anesthetics leads to neurotoxic effects in animal models-ranging from cell death to learning and memory deficits. These neurotoxic effects invoke a variety of molecular pathways, exerting either immediate or long-term effects at the cellular and behavioural levels. However, little is known about the gene expression changes following early neonatal exposure to these anesthetic agents. We report here on the effects of sevoflurane, a commonly used inhalational anesthetic, on learning and memory and identify a key set of genes that may likely be involved in the observed behavioural deficits. Specifically, we demonstrate that sevoflurane exposure in postnatal day 7 (P7) rat pups results in subtle, but distinct, memory deficits in the adult animals that have not been reported previously. Interestingly, when given intraperitoneally, pre-treatment with dexmedetomidine (DEX) could only prevent sevoflurane-induced anxiety in open field testing. To identify genes that may have been altered in the neonatal rats after sevoflurane and DEX exposure, specifically those impacting cellular viability, learning, and memory, we conducted an extensive Nanostring study examining over 770 genes. We found differential changes in the gene expression levels after exposure to both agents. A number of the perturbed genes found in this study have previously been implicated in synaptic transmission, plasticity, neurogenesis, apoptosis, myelination, and learning and memory. Our data thus demonstrate that subtle, albeit long-term, changes observed in an adult animal's learning and memory after neonatal anesthetic exposure may likely involve perturbation of specific gene expression patterns.


Assuntos
Anestésicos Inalatórios , Aprendizagem , Animais , Ratos , Sevoflurano/farmacologia , Animais Recém-Nascidos , Ratos Sprague-Dawley , Anestésicos Inalatórios/toxicidade , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/genética , Aprendizagem em Labirinto , Hipocampo/metabolismo
3.
Biomedicines ; 11(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36830927

RESUMO

Anesthetics have been shown to cause cytotoxicity, cell death, affect neuronal growth and connectivity in animal models; however, their effects on learning and memory remain to be fully defined. Here, we examined the effects of the inhalation anesthetic sevoflurane (SEV)-both in vivo by examining learning and memory in freely behaving animals, and in vitro using cultured neurons to assess its impact on viability, mitochondrial structure, and function. We demonstrate here that neonatal exposure to sub-clinically used concentrations of SEV results in significant, albeit subtle and previously unreported, learning and memory deficits in adult animals. These deficits involve neuronal cell death, as observed in cell culture, and are likely mediated through perturbed mitochondrial structure and function. Parenthetically, both behavioural deficits and cell death were prevented when the animals and cultured neurons were pre-treated with the anesthetic adjuvant Dexmedetomidine (DEX). Taken together, our data provide direct evidence for sevoflurane-induced cytotoxic effects at the neuronal level while perturbing learning and memory at the behavioural level. In addition, our data underscore the importance of adjuvant agents such as DEX that could potentially counter the harmful effects of commonly used anesthetic agents for better clinical outcomes.

4.
Stem Cell Res ; 66: 103003, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528013

RESUMO

Long QT syndrome (LQTS) is an inherited cardiovascular disorder characterized by electrical conduction abnormalities leading to arrhythmia, fainting, seizures, and an increased risk of sudden death. There are over 15 genes involved in causing LQTS, including SNTA1. Here we generated two human-induced pluripotent stem cell (iPSC) lines from two LQT patients carrying a missense mutation in SNTA1 (c.1088A > C). Both lines showed normal morphological properties, expressed pluripotency markers, showed a normal karyotype profile, and had the ability to differentiate into the three germ layers, making them a valuable tool to model LQTS to investigate the pathological mechanisms related to this SNTA1 variant.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/metabolismo , Mutação de Sentido Incorreto , Mutação
5.
Sci Rep ; 11(1): 16153, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373548

RESUMO

Recent animal studies have drawn concerns regarding most commonly used anesthetics and their long-term cytotoxic effects, specifically on the nervous tissue. It is therefore imperative that the search continues for agents that are non-toxic at both the cellular and behavioural level. One such agent appears to be dexmedetomidine (DEX) which has not only been found to be less neurotoxic but has also been shown to protect neurons from cytotoxicity induced by other anesthetic agents. However, DEX's effects on the growth and synaptic connectivity at the individual neuronal level, and the underlying mechanisms have not yet been fully resolved. Here, we tested DEX for its impact on neuronal growth, synapse formation (in vitro) and learning and memory in a rodent model. Rat cortical neurons were exposed to a range of clinically relevant DEX concentrations (0.05-10 µM) and cellular viability, neurite outgrowth, synaptic assembly and mitochondrial morphology were assessed. We discovered that DEX did not affect neuronal viability when used below 10 µM, whereas significant cell death was noted at higher concentrations. Interestingly, in the presence of DEX, neurons exhibited more neurite branching, albeit with no differences in corresponding synaptic puncta formation. When rat pups were injected subcutaneously with DEX 25 µg/kg on postnatal day 7 and again on postnatal day 8, we discovered that this agent did not affect hippocampal-dependent memory in freely behaving animals. Our data demonstrates, for the first time, the non-neurotoxic nature of DEX both in vitro and in vivo in an animal model providing support for its utility as a safer anesthetic agent. Moreover, this study provides the first direct evidence that although DEX is growth permissive, causes mitochondrial fusion and reduces oxygen reactive species production, it does not affect the total number of synaptic connections between the cortical neurons in vitro.


Assuntos
Dexmedetomidina/farmacologia , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Anestésicos/farmacologia , Anestésicos/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dexmedetomidina/toxicidade , Feminino , Lobo Frontal/citologia , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Dinâmica Mitocondrial/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Fármacos Neuroprotetores/farmacologia , Gravidez , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
6.
Sci Rep ; 11(1): 4567, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633281

RESUMO

Anesthetics are deemed necessary for all major surgical procedures. However, they have also been found to exert neurotoxic effects when tested on various experimental models, but the underlying mechanisms remain unknown. Earlier studies have implicated mitochondrial fragmentation as a potential target of anesthetic-induced toxicity, although clinical strategies to protect their structure and function remain sparse. Here, we sought to determine if preserving mitochondrial networks with a non-toxic, short-life synthetic peptide-P110, would protect cortical neurons against both inhalational and intravenous anesthetic-induced neurotoxicity. This study provides the first direct and comparative account of three key anesthetics (desflurane, propofol, and ketamine) when used under identical conditions, and demonstrates their impact on neonatal, rat cortical neuronal viability, neurite outgrowth and synaptic assembly. Furthermore, we discovered that inhibiting Fis1-mediated mitochondrial fission reverses anesthetic-induced aberrations in an agent-specific manner. This study underscores the importance of designing mitigation strategies invoking mitochondria-mediated protection from anesthetic-induced toxicity in both animals and humans.


Assuntos
Anestésicos Gerais/efeitos adversos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Sinapses/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Imunofluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/síntese química , Peptídeos/síntese química , Propofol/efeitos adversos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
7.
Front Cardiovasc Med ; 6: 167, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803760

RESUMO

We used patient dermal fibroblasts to characterize the mitochondrial abnormalities associated with the dilated cardiomyopathy with ataxia syndrome (DCMA) and to study the effect of the mitochondrially-targeted peptide SS-31 as a potential novel therapeutic. DCMA is a rare and understudied autosomal recessive disorder thought to be related to Barth syndrome but caused by mutations in DNAJC19, a protein of unknown function localized to the mitochondria. The clinical disease is characterized by 3-methylglutaconic aciduria, dilated cardiomyopathy, abnormal neurological development, and other heterogeneous features. Until recently no effective therapies had been identified and affected patients frequently died in early childhood from intractable heart failure. Skin fibroblasts from four pediatric patients with DCMA were used to establish parameters of mitochondrial dysfunction. Mitochondrial structure, reactive oxygen species (ROS) production, cardiolipin composition, and gene expression were evaluated. Immunocytochemistry with semi-automated quantification of mitochondrial structural metrics and transmission electron microscopy demonstrated mitochondria to be highly fragmented in DCMA fibroblasts compared to healthy control cells. Live-cell imaging demonstrated significantly increased ROS production in patient cells. These abnormalities were reversed by treating DCMA fibroblasts with SS-31, a synthetic peptide that localizes to the inner mitochondrial membrane. Levels of cardiolipin were not significantly different between control and DCMA cells and were unaffected by SS-31 treatment. Our results demonstrate the abnormal mitochondria in fibroblasts from patients with DCMA and suggest that SS-31 may represent a potential therapy for this devastating disease.

8.
World J Cardiol ; 11(10): 221-235, 2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31754410

RESUMO

The genetic cardiomyopathies are a group of disorders related by abnormal myocardial structure and function. Although individually rare, these diseases collectively represent a significant health burden since they usually develop early in life and are a major cause of morbidity and mortality amongst affected children. The heterogeneity and rarity of these disorders requires the use of an appropriate model system in order to characterize the mechanism of disease and develop useful therapeutics since standard drug trials are infeasible. A common approach to study human disease involves the use of animal models, especially rodents, but due to important biological and physiological differences, this model system may not recapitulate human disease. An alternative approach for studying the metabolic cardiomyopathies relies on the use of cellular models which have most frequently been immortalized cell lines or patient-derived fibroblasts. However, the recent introduction of induced pluripotent stem cells (iPSCs), which have the ability to differentiate into any cell type in the body, is of great interest and has the potential to revolutionize the study of rare diseases. In this paper we review the advantages and disadvantages of each model system by comparing their utility for the study of mitochondrial cardiomyopathy with a particular focus on the use of iPSCs in cardiovascular biology for the modeling of rare genetic or metabolic diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...