Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924650

RESUMO

FLAGELLIN SENSING 2 (FLS2) encodes a pattern recognition receptor that perceives bacterial flagellin. While putative FLS2 orthologs are broadly conserved in plants, their functional characterization remains limited. Here, we report the identification of orthologs in cucumber (Cucumis sativus) and melon (C. melo), named CsFLS2 and CmFLS2, respectively. Homology searching identified CsFLS2, and virus-induced gene silencing (VIGS) demonstrated that CsFLS2 is required for flg22-triggered ROS generation. Interestingly, genome re-sequencing of melon cv. Lennon and subsequent genomic PCR revealed that Lennon has two CmFLS2 haplotypes, haplotype I encoding full-length CmFLS2 and haplotype II encoding a truncated form. We show that VIGS-mediated knockdown of CmFLS2 haplotype I resulted in a significant reduction in both flg22-triggered ROS generation and immunity to a bacterial pathogen in melon cv. Lennon. Remarkably, genomic PCR of CmFLS2 revealed that 68% of tested commercial melon cultivars possess only CmFLS2 haplotype II: these cultivars thus lack functional CmFLS2. To explore evolutionary aspects of CmFLS2 haplotype II occurrence, we genotyped the CmFLS2 locus in 142 melon accessions by genomic PCR and analyzed 437 released sequences. The results suggest that CmFLS2 haplotype II is derived from C. melo subsp. melo. Furthermore, we suggest that the proportion of CmFLS2 haplotype II increased among the improved melo group compared with the primitive melo group. Collectively, these findings suggest that the deleted FLS2 locus generated in the primitive melo subspecies expanded after domestication, resulting in the spread of commercial melon cultivars defective in flagellin recognition, which is critical for bacterial immunity.

2.
Mol Plant Microbe Interact ; 36(9): 549-553, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37102778

RESUMO

The 12th iteration of the Japan-US Seminar in Plant Pathology was held in Ithaca, New York at Cornell University in the fall of 2022. Presentations covered a range of topics under the theme "Remodeling of the Plant-Microbe Environment During Disease, Defense, and Mutualism," and the meeting included a panel discussion of best practices in science communication. This report presents highlights of the meeting, from the perspective of early career participants of the seminar. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...