Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Ther ; 233: 108023, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34662687

RESUMO

Riboflavin (vitamin B2) is essential for cellular growth and function. It is enzymatically converted to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which participate in the metabolic oxidation-reduction reactions of carbohydrates, amino acids, and lipids. Human riboflavin transporters RFVT1, RFVT2, and RFVT3 have been identified and characterized since 2008. They are highly specific transporters of riboflavin. RFVT3 has functional characteristics different from those of RFVT1 and RFVT2. RFVT3 contributes to absorption in the small intestine, reabsorption in the kidney, and transport to the fetus in the placenta, while RFVT2 mediates the tissue distribution of riboflavin from the blood. Several mutations in the SLC52A2 gene encoding RFVT2 and the SLC52A3 gene encoding RFVT3 were found in patients with a rare neurological disorder known as Brown-Vialetto-Van Laere syndrome. These patients commonly present with bulbar palsy, hearing loss, muscle weakness, and respiratory symptoms in infancy or later in childhood. A decrease in plasma riboflavin levels has been observed in several cases. Recent studies on knockout mice and patient-derived cells have advanced the understanding of these mechanisms. Here, we summarize novel findings on RFVT1-3 and their genetic diseases and discuss their potential as therapeutic drugs.


Assuntos
Paralisia Bulbar Progressiva , Perda Auditiva Neurossensorial , Animais , Paralisia Bulbar Progressiva/diagnóstico , Paralisia Bulbar Progressiva/tratamento farmacológico , Paralisia Bulbar Progressiva/genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/terapia , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Mutação , Riboflavina/genética , Riboflavina/metabolismo , Riboflavina/uso terapêutico
2.
Biol Pharm Bull ; 44(2): 283-286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33518683

RESUMO

Riboflavin (vitamin B2) plays an important role in cellular growth and function. Riboflavin transporter 2 (RFVT2) is widely expressed in several tissues, especially in the brain and salivary glands, and plays an important role in the tissue disruption of riboflavin. During the last 10 years, mutations in SLC52A2 have been documented in patients with a rare neurological disorder known as Brown-Vialetto-Van Laere syndrome. However, no suitable animal model of this disease has been reported. Here, we aimed to clarify the physiological role of RFVT2 using Slc52a2-mutant mice. The appearance, body weight, and plasma riboflavin concentration of Slc52a2 heterozygous mutant (Slc52a2+/-) mice were similar to those of wild-type (WT) mice. However, intercrossing between Slc52a2+/- mice failed to generate Slc52a2 homozygous mutant (Slc52a2-/-) mice. This suggested that Slc52a2 gene deficiency results in early embryonic lethality. Our findings suggested that RFVT2 is essential for growth and development, and its deletion may influence embryonic survival.


Assuntos
Paralisia Bulbar Progressiva/genética , Genes Letais , Perda Auditiva Neurossensorial/genética , Proteínas de Membrana Transportadoras/genética , Receptores Acoplados a Proteínas G/genética , Riboflavina/metabolismo , Animais , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Feminino , Humanos , Masculino , Proteínas de Membrana Transportadoras/deficiência , Camundongos , Camundongos Knockout , Mutação , Receptores Acoplados a Proteínas G/metabolismo
3.
Sci Rep ; 10(1): 18443, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116204

RESUMO

Riboflavin transporter 3 (RFVT3), encoded by the SLC52A3 gene, is important for riboflavin homeostasis in the small intestine, kidney, and placenta. Our previous study demonstrated that Slc52a3 knockout (Slc52a3-/-) mice exhibited neonatal lethality and metabolic disorder due to riboflavin deficiency. Here, we investigated the influence of Slc52a3 gene disruption on brain development using Slc52a3-/- embryos. Slc52a3-/- mice at postnatal day 0 showed hypoplasia of the brain and reduced thickness of cortical layers. At embryonic day 13.5, the formation of Tuj1+ neurons and Tbr2+ intermediate neural progenitors was significantly decreased; no significant difference was observed in the total number and proliferative rate of Pax6+ radial glia. Importantly, the hypoplastic phenotype was rescued upon riboflavin supplementation. Thus, it can be concluded that RFVT3 contributes to riboflavin homeostasis in embryos and that riboflavin itself is required during embryonic development of the cerebral cortex in mice.


Assuntos
Córtex Cerebral/embriologia , Proteínas de Membrana Transportadoras/deficiência , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Deficiência de Riboflavina/embriologia , Animais , Córtex Cerebral/patologia , Camundongos , Camundongos Knockout , Células-Tronco Neurais/patologia , Neurônios/patologia , Deficiência de Riboflavina/patologia
4.
Biol Pharm Bull ; 40(11): 1990-1995, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093349

RESUMO

Riboflavin (vitamin B2) plays a role in various biochemical oxidation-reduction reactions. Flavin mononucleotide (FMN) and FAD, the biologically active forms, are made from riboflavin. Riboflavin transporters (RFVTs), RFVT1-3/Slc52a1-3, have been identified. However, the roles of human (h)RFVTs in FMN and FAD homeostasis have not yet been fully clarified. In this study, we assessed the contribution of each hRFVT to riboflavin, FMN and FAD uptake and efflux using in vitro studies. The transfection of hRFVTs increased cellular riboflavin concentrations. The uptake of riboflavin by human embryonic kidney cells transfected with hRFVTs was significantly increased, and the efflux was accelerated in a time-dependent manner. However, the uptake and efflux of FMN and FAD hardly changed. These results strongly suggest that riboflavin, rather than FMN or FAD, passes through plasma membranes via hRFVTs. Our findings could suggest that hRFVTs are involved in riboflavin homeostasis in the cells, and that FMN and FAD concentrations are regulated by riboflavin kinase and FAD synthase.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Riboflavina/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana Transportadoras/genética , Transporte Proteico , Receptores Acoplados a Proteínas G/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA