Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475488

RESUMO

In order to study the soil nitrogen (N) distribution pattern in the root zone of chili peppers under aerated drip irrigation (ADI) conditions and analyze the relationship between soil N distribution and crop growth, two irrigation methods (conventional drip irrigation and ADI) and three N levels (0, 140, and 210 kg hm-2) were set up in this experiment. Soil samples were collected by the soil auger method at the end of different reproductive periods, and the uniformity coefficient of soil N in the spatial distribution was calculated by the method of Christiansen's coefficient. The growth status and soil-related indices of pepper were determined at each sampling period, and the relationships between soil N distribution and chili pepper growth were obtained based on principal component analysis (PCA). The results showed that the spatial content of soil nitrate-N (NO3--N) fluctuated little during the whole reproductive period of chili peppers under ADI conditions, and the coefficient of uniformity of soil NO3--N content distribution increased by 5.29~37.63% compared with that of conventional drip irrigation. The aerated treatment increased the root length and surface area of chili peppers. In addition, the ADI treatments increased the plant height, stem diameter, root vigor, and leaf chlorophyll content to some extent compared with the nonaerated treatment. The results of PCA showed that the yield of chili peppers was positively correlated with the uniformity coefficient of soil NO3--N, root vigor, and root length. ADI can significantly improve the distribution uniformity of soil NO3--N and enhance the absorption and utilization of N by the root system, which in turn is conducive to the growth of the crop, the formation of yields, and the improvement of fruit quality.

2.
Plants (Basel) ; 13(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256824

RESUMO

In order to provide a theoretical basis for the rational application of nitrogen fertilizer for tomatoes under aerated drip irrigation, a model of the critical nitrogen dilution curve was established in this study, and the feasibility of the nitrogen nutrition index (NNI) for the real-time diagnosis and evaluation of the nitrogen nutrient status was explored. The tomato variety "FENOUYA" was used as the test crop, and aerated drip irrigation was adopted by setting three levels of aeration rates, namely, A1 (dissolved oxygen concentration of irrigation water is 5 mg L-1), A2 (dissolved oxygen concentration of irrigation water is 15 mg L-1), and A3 (dissolved oxygen concentration of irrigation water is 40 mg L-1), and three levels of nitrogen rates, namely, N1 (120 kg ha-1), N2 (180 kg ha-1) and N3 (240 kg ha-1). The model of the critical nitrogen concentration dilution of tomatoes under different aerated treatments was established. The results showed that (1) the dry matter accumulation of tomatoes increased with the increase in the nitrogen application rate in a certain range and it showed a trend of first increase and then decrease with the increase in aeration rate. (2) As the reproductive period progressed, the nitrogen concentration in tomato plants showed a decreasing trend. (3) There was a power exponential relationship between the critical nitrogen concentration of tomato plant growth and above-ground biomass under different levels of aeration and nitrogen application rate, but the power exponential curves were characterized by A1 (Nc = 15.674DM-0.658), A2 (Nc = 101.116DM-0.455), A3 (Nc = 119.527DM-0.535), N1 (Nc = 33.819DM-0.153), N2 (Nc = 127.759DM-0.555) and N3 (Nc = 209.696DM-0.683). The standardized root mean square error (n-RMSE) values were 0.08%, 3.68%, 3.79% 0.50%, 1.08%, and 0.55%, which were less than 10%, and the model has good stability. (4) The effect of an increased nitrogen application rate on the critical nitrogen concentration dilution curve was more significant than that of the increase in aeration rate. (5) A nitrogen nutrition index model was built based on the critical nitrogen concentration model to evaluate the nitrogen nutritional status of tomatoes, whereby 180 kg ha-1 was the optimal nitrogen application rate, and 15 mg L-1 dissolved oxygen of irrigation water was the optimal aeration rate for tomatoes.

3.
Planta ; 257(5): 98, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37067628

RESUMO

MAIN CONCLUSION: The combination of water and gas at an aeration rate of 15 mg/L and irrigation amount of 0.8 Ep significantly promoted the root morphology, inter-root soil bacterial community structure and diversity of pepper, enhanced the structure of molecular symbiotic network, and stimulated the potential ecosystem function. Poor aeration adversely affects the root morphology of pepper (Capsicum annuum L.) and bacterial community. It is critical to understand the effects of water-air interactions on root morphology and bacterial community structure and diversity. A randomized block experiment was conducted under the two aeration rates of dissolved oxygen mass concentrations, including A: 15 mg/L, O: 40 mg/L, and C: non-aeration as control treatment, and two irrigation rates of W1 and W2 (0.8 Ep and 1.0 Ep). The results showed that aerated irrigation had a significant effect on the root morphology of pepper. Compared with treatment CW1, treatment AW1 increased root dry weight, root length, root volume, and root surface area by 13.63%, 11.09%, 59.47%, and 61.67%, respectively (P < 0.05). Aerated irrigation significantly increased the relative abundance of Actinobacteria, Gemmatimonadetes, Alphaproteobacteria, Gemmatimonas, Sphingomonas, and KD4-96 aerobic beneficial bacteria. It decreased the relative abundance of Proteobacteria, Monomycetes, Bacteroidetes, Corynebacterium, Gammaproteobacteria, Anaerolineae, Subgroup_6, MND1, Haliangium, and Thiobacillus. The Pielou_e, Shannon and Simpson indexes of treatment AW1 were significantly higher than treatments OW1 and CW1. The results of the ß-diversity of bacterial communities showed that the structure of soil bacterial communities differed significantly among treatments. Actinobacteria was a key phylum affecting root morphology, and AW1 treatment was highly correlated with Actinobacteria. Molecular ecological network analysis showed a relatively high number of bacterial network nodes and more complex relationships among species under the aeration of level 15 mg/L and 0.8 Ep, as well as the emergence of new phylum-level beneficial species: Dependentiae, BRC1, Cyanobacteria, Deinococcus-Thermus, Firmicutes, and Planctomycetes. Therefore, the aeration of 15 mg/L and 0.8 times crop-evaporation coefficient can increase root morphology, inter-root soil bacterial community diversity and bacterial network structure, and enhance potential ecosystem functions in the rhizosphere.


Assuntos
Actinobacteria , Capsicum , Solo/química , Ecossistema , Água , Bactérias/genética , Microbiologia do Solo
4.
Viral Immunol ; 36(3): 153-162, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36944125

RESUMO

We investigated the persistence of SARS-CoV-2-specific neutralizing antibodies in serum (CoV-2-SNAb) against the "WH-Human 1" coronavirus in 57 convalescent persons from January 2020 to January 2021. The CoV-2-SNAb response against authentic "WH-Human 1" showed a significant (p < 0.01) neutralizing high effect (≥95%) in the following manner: by 94.7% neutralization for up to 6 months, by 73.1% for up to 8 months, and by 31.7% for up to 10 months in correlation with a significant decrease in the concentration of the virus determined by SARS-CoV-2 spike protein extracellular domain and spike-receptor-binding domain (S-RBD). There was neutralizing effect (<95%) when the S-RBD optical density (OD) value was more than 1.0, showing a suitable threshold of S-RBD = 1.0 (antibody-tittering, OD). However, in some convalescent persons, no neutralizing effect (<95%) was observed although the SARS-CoV-2-specific neutralizing antibodies were bound to the S-RBD (OD >1.0). The neutralization of the virus in these cases may not involve S-RBD, but rather B- and T cell memory responses in overall immunity, using the threshold value (OD = 1.0) of S-RBD as a simple and effective method to determine the neutralization effect of the antibody efficacy and use of vaccination in combination with a standard pseudovirus neutralizing assay. We suggest that convalescent persons should contact their physicians 6-month postinfection to test the function of their serum neutralizing antibodies and determine whether administering a SARS-CoV-2 vaccine is necessary to prevent the development of severe illness in the future.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , Anticorpos Antivirais , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/química , Testes de Neutralização
5.
J Immunol Res ; 2023: 7612566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969497

RESUMO

Serum thymidine kinase 1 protein (STK1p) concentration has been used successfully as a reliable proliferating serum biomarker in early tumour discovery and clinical settings. It is detected by an enhanced chemiluminescence (ECL) dot blot assay with the biotin-streptavidin (BSA) platform (a gold standard) based on chicken anti-human thymidine kinase 1 IgY polyclonal antibody (hTK1-IgY-pAb). However, ECL dot blotting is a semiautomatic method that has been limited to large-scale applications due to the differences among batches of antibodies from individual hens, and the skill level of operation technicians sometimes results in unstable STK1p values. Therefore, a highly stable recombinant chicken full-length IgY monoclonal antibody in combination with a fully automated sandwich biotin-streptavidin (sandwich-BSA) platform was developed. Hens were immunized with 31-peptide, a key sequence of human TK1 (hTK1), before constructing an immune phage display scFv library. Finally, a recombinant full-length IgY monoclonal antibody (hTK1-IgY-rmAb#5) with high-affinity binding with human recombinant TK1 (rhTK1) (3.95 × 10-10 mol/L), high sensitivity with hTK1 calibrators (slope of linear curve: 89.98), and high specificity with low/elevated STK1p (r ≈ 0.92-0.963) was identified. hTK1-IgY-rmAb#5 showed a specific immune response with thymidine kinase 1 (TK1) in TK1-positive/negative cell lysates by Western blotting and immunohistochemistry (IHC) in normal and cancer tissues. In particular, the detection of TK1 serum samples from health centres showed a high coincidence rate (r = 0.988, n = 90) between hTK1-IgY-rmAb#5 and hTK1-IgY-pAb and between the semiautomatic ECL dot blot BSA platform and the novel automatic chemiluminescence sandwich-BSA platform (r = 0.857, n = 292). hTK1-IgY-rmAb#5 is stable and highly sensitive for detecting the lowest STK1p value at 0.01 pmol/L (pM). The accuracy is high (SD < 2.5%) between different batches. It is easy to use the novel hTK1-IgY-rmAb#5 on a new automatic chemiluminescence sandwich-BSA platform. It will be beneficial for large-scale health screenings.


Assuntos
Biotina , Neoplasias , Humanos , Animais , Feminino , Estreptavidina , Anticorpos Monoclonais , Galinhas , Luminescência , Imunoglobulinas , Proteínas Recombinantes , Ensaio de Imunoadsorção Enzimática/métodos
6.
Eur J Cell Biol ; 101(4): 151280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36334559

RESUMO

Early discover of risk progression of invisible carcinomas is important for a prerequisite successful treatment. Here, we investigated whether concentration of human thymidine kinase 1 (HTK1) discover invisible malignant human tumours. The HTK1 concentration of tumour cellular based on HTK1 IgY-polyclonal-antibody (HTK1-IgY-pAb) was determined by using a novel automatic chemiluminescence analyser with sandwich biotin-streptavidin (SBSA) platform. Minimum number of cells able to be detected by this technology used cells with low and high concentration of HTK1. The limit visibility by tumour imaging is approximately 1 mm in diameter, corresponding to approximately 109 cells with a cell diameter of 1 µm. Based on a HTK1 standard curve and a molecular weight of HTK1 of 96 kD, the HTK1protein (HTK1p) concentration per cell was calculated to be 0.021 pg. Assuming 200 pg in total protein/cell, approximately 50 × 106 growing malignant cells in the body were calculated to releases HTK1 into 5-liter blood. A HTK1 values of 3.914, 0.435 and 0.009 pmol/L corresponds to 10 × 105, 2 × 105 and 1 × 105 growing malignant cells, respectively. The lowest detectable sensitivity of HTK1 is 0.009 pmol/L in 1 × 105 growing malignant cells and 0.01 pmol/L in blood serum, detectable in health screening. Comparing the novel automatic chemiluminescence analyser with the original ECL dot-blot assay using serum HTK1p (health screening, n = 265) showed high correlation (r = 0.8743, P < .000). In conclusion, the novel automatic chemiluminescence analyser with SBSA platform is a reliable method with high accuracy to determine carcinoma invisible.


Assuntos
Neoplasias , Timidina Quinase , Humanos
7.
Int J Food Microbiol ; 148(2): 75-9, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21652102

RESUMO

A multiplex loop-mediated isothermal amplification-RFLP (mLAMP-RFLP) was developed and validated for simultaneous detection of Salmonella strains and Shigella strains in milk. In this system, two sets of LAMP primers were designed to specifically target invA of Salmonella spp. and ipaH of Shigella spp. Under isothermal conditions at 63 °C, ladder pattern of DNA bands could be amplified within 60 min in the presence of genomic DNAs of Salmonella strains and Shigella strains, which could be distinguished between Salmonella spp. and Shigella spp. simultaneously based on the different ladder pattern of DNA bands and subsequent restriction enzyme analysis. The overall analysis time was approximately 20 h including the enrichment of the bacterial cells, which greatly saved detection time. The sensitivity of mLAMP was found to be 100 fg DNA/tube with genomic DNAs of Salmonella strains and Shigella strains, comparatively, multiplex PCR was 1 pg DNA/tube. The mLAMP allowed the detection of milk sample artificially contaminated by Salmonella strains and Shigella strains at initial inoculation levels of approximate 5CFU/10 mL. In conclusion, the mLAMP described here can potentially facilitate simultaneous monitoring of Salmonella and Shigella in a large number of food samples, which could be used as a primary screening method and as a supplement to classical detection method.


Assuntos
Contaminação de Alimentos/análise , Microbiologia de Alimentos/métodos , Leite/microbiologia , Salmonella/isolamento & purificação , Shigella/isolamento & purificação , Animais , Primers do DNA/genética , DNA Bacteriano/análise , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Salmonella/genética , Sensibilidade e Especificidade , Shigella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA