Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(40): 20115-20123, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527272

RESUMO

Recent studies have shown that RNA polymerase (RNAP) is organized into distinct clusters in Escherichia coli and Bacillus subtilis cells. Spatially organized molecular components in prokaryotic systems imply compartmentalization without the use of membranes, which may offer insights into unique functions and regulations. It has been proposed that the formation of RNAP clusters is driven by active ribosomal RNA (rRNA) transcription and that RNAP clusters function as factories for highly efficient transcription. In this work, we examined these hypotheses by investigating the spatial organization and transcription activity of RNAP in E. coli cells using quantitative superresolution imaging coupled with genetic and biochemical assays. We observed that RNAP formed distinct clusters that were engaged in active rRNA synthesis under a rich medium growth condition. Surprisingly, a large fraction of RNAP clusters persisted in the absence of high rRNA transcription activities or when the housekeeping σ70 was sequestered, and was only significantly diminished when all RNA transcription was inhibited globally. In contrast, the cellular distribution of RNAP closely followed the morphology of the underlying nucleoid under all conditions tested irrespective of the corresponding transcription activity, and RNAP redistributed into dispersed, smaller clusters when the supercoiling state of the nucleoid was perturbed. These results suggest that RNAP was organized into active transcription centers under the rich medium growth condition; its spatial arrangement at the cellular level, however, was not dependent on rRNA synthesis activity and was likely organized by the underlying nucleoid.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Ribossômico/genética , Transcrição Gênica , Análise por Conglomerados , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/metabolismo , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , Fatores de Transcrição/genética
2.
Nucleic Acids Res ; 47(8): 3970-3985, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30843055

RESUMO

RNA polymerase (RNAP), the transcription machinery, shows dynamic binding across the genomic DNA under different growth conditions. The genomic features that selectively redistribute the limited RNAP molecules to dictate genome-wide transcription in response to environmental cues remain largely unknown. We chose the bacterial osmotic stress response model to determine genomic features that direct genome-wide redistribution of RNAP during the stress. Genomic mapping of RNAP and transcriptome profiles corresponding to the different temporal states after salt shock were determined. We found rapid redistribution of RNAP across the genome, primarily at σ70 promoters. Three subsets of genes exhibiting differential salt sensitivities were identified. Sequence analysis using an information-theory based σ70 model indicates that the intergenic regions of salt-responsive genes are enriched with a higher density of σ70 promoter-like sites than those of salt-sensitive genes. In addition, the density of promoter-like sites has a positive linear correlation with RNAP binding at different salt concentrations. The RNAP binding contributed by the non-initiating promoter-like sites is important for gene transcription at high salt concentration. Our study demonstrates that hyperdensity of σ70 promoter-like sites in the intergenic regions of salt-responsive genes drives the RNAP redistribution for reprograming the transcriptome to counter osmotic stress.


Assuntos
DNA Bacteriano/genética , DNA Intergênico/genética , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Cloreto de Potássio/farmacologia , Fator sigma/genética , Meios de Cultura/química , Meios de Cultura/farmacologia , DNA Bacteriano/metabolismo , DNA Intergênico/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Teoria da Informação , Modelos Genéticos , Pressão Osmótica , Regiões Promotoras Genéticas , Salinidade , Fator sigma/metabolismo , Transcrição Gênica
3.
Methods Mol Biol ; 1837: 117-129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109608

RESUMO

Superresolution imaging technology has contributed to our understanding of the subnucleoid organization in E. coli cells. Multicolor superresolution images revealing "bacterial nucleolus-like structure or organization," "nucleolus-like compartmentalization of the transcription factories," and "spatial segregation of the transcription and replication machineries" have enhanced our understanding of the dynamic landscape of the bacterial chromatin. This chapter provides a brief introduction into multicolor three-dimensional superresolution structured illumination microscopy (3D-SIM) used to study the spatial organization of the transcription machinery and its spatial relationship with replisomes from a microbiological research perspective. In addition to a detailed protocol, practical considerations are discussed in relation to (1) sampling and treatment of cells containing fluorescent fusion proteins, (2) imaging the transcription and replication machineries at single-cell levels, (3) performing imaging experiments to capture the spatial organization of the transcription machinery and the nucleoid, and (4) image acquisition and analysis.


Assuntos
Cromossomos Bacterianos , Replicação do DNA , Imageamento Tridimensional , Microscopia de Fluorescência/métodos , Transcrição Gênica , Bactérias/genética , Escherichia coli/genética , Processamento de Imagem Assistida por Computador
4.
Front Microbiol ; 9: 1115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922250

RESUMO

In the fast-growing Escherichia coli cells, RNA polymerase (RNAP) molecules are concentrated and form foci at clusters of ribosomal RNA (rRNA) operons resembling eukaryotic nucleolus. The bacterial nucleolus-like organization, spatially compartmentalized at the surface of the compact bacterial chromosome (nucleoid), serves as transcription factories for rRNA synthesis and ribosome biogenesis, which influences the organization of the nucleoid. Unlike wild type that has seven rRNA operons in the genome in a mutant that has six (Δ6rrn) rRNA operons deleted in the genome, there are no apparent transcription foci and the nucleoid becomes uncompacted, indicating that formation of RNAP foci requires multiple copies of rRNA operons clustered in space and is critical for nucleoid compaction. It has not been determined, however, whether a multicopy plasmid-borne rRNA operon (prrnB) could substitute the multiple chromosomal rRNA operons for the organization of the bacterial nucleolus-like structure in the mutants of Δ6rrn and Δ7rrn that has all seven rRNA operons deleted in the genome. We hypothesized that extrachromosomal nucleolus-like structures are similarly organized and functional in trans from prrnB in these mutants. In this report, using multicolor images of three-dimensional superresolution Structured Illumination Microscopy (3D-SIM), we determined the distributions of both RNAP and NusB that are a transcription factor involved in rRNA synthesis and ribosome biogenesis, prrnB clustering, and nucleoid structure in these two mutants in response to environmental cues. Our results found that the extrachromosomal nucleolus-like organization tends to be spatially located at the poles of the mutant cells. In addition, formation of RNAP foci at the extrachromosomal nucleolus-like structure condenses the nucleoid, supporting the idea that active transcription at the nucleolus-like organization is a driving force in nucleoid compaction.

5.
Nucleic Acids Res ; 45(9): 5349-5358, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28398568

RESUMO

Escherichia coli topoisomerase I (TopA), a regulator of global and local DNA supercoiling, is modified by Nε-Lysine acetylation. The NAD+-dependent protein deacetylase CobB can reverse both enzymatic and non-enzymatic lysine acetylation modification in E. coli. Here, we show that the absence of CobB in a ΔcobB mutant reduces intracellular TopA catalytic activity and increases negative DNA supercoiling. TopA expression level is elevated as topA transcription responds to the increased negative supercoiling. The slow growth phenotype of the ΔcobB mutant can be partially compensated by further increase of intracellular TopA level via overexpression of recombinant TopA. The relaxation activity of purified TopA is decreased by in vitro non-enzymatic acetyl phosphate mediated lysine acetylation, and the presence of purified CobB protects TopA from inactivation by such non-enzymatic acetylation. The specific activity of TopA expressed from His-tagged fusion construct in the chromosome is inversely proportional to the degree of in vivo lysine acetylation during growth transition and growth arrest. These findings demonstrate that E. coli TopA catalytic activity can be modulated by lysine acetylation-deacetylation, and prevention of TopA inactivation from excess lysine acetylation and consequent increase in negative DNA supercoiling is an important physiological function of the CobB protein deacetylase.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sirtuínas/metabolismo , Acetilação , Biocatálise , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Eletroforese em Gel de Ágar , Escherichia coli/crescimento & desenvolvimento , Lisina/metabolismo , Mutação/genética , Fenótipo , Ligação Proteica , Proteômica , Proteínas Recombinantes/metabolismo , Solubilidade
6.
Crit Rev Biochem Mol Biol ; 52(1): 96-106, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28006965

RESUMO

We have learned a great deal about RNA polymerase (RNA Pol), transcription factors, and the transcriptional regulation mechanisms in prokaryotes for specific genes, operons, or transcriptomes. However, we have only begun to understand how the transcription machinery is three-dimensionally (3D) organized into bacterial chromosome territories to orchestrate the transcription process and to maintain harmony with the replication machinery in the cell. Much progress has been made recently in our understanding of the spatial organization of the transcription machinery in fast-growing Escherichia coli cells using state-of-the-art superresolution imaging techniques. Co-imaging of RNA polymerase (RNA Pol) with DNA and transcription elongation factors involved in ribosomal RNA (rRNA) synthesis, and ribosome biogenesis has revealed similarities between bacteria and eukaryotes in the spatial organization of the transcription machinery for growth genes, most of which are rRNA genes. Evidence supports the notion that RNA Pol molecules are concentrated, forming foci at the clustering of rRNA operons resembling the eukaryotic nucleolus. RNA Pol foci are proposed to be active transcription factories for both rRNA genes expression and ribosome biogenesis to support maximal growth in optimal growing conditions. Thus, in fast-growing bacterial cells, RNA Pol foci mimic eukaryotic Pol I activity, and transcription factories resemble nucleolus-like compartmentation. In addition, the transcription and replication machineries are mostly segregated in space to avoid the conflict between the two major cellular functions in fast-growing cells.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , Transcrição Gênica , Animais , Bactérias/citologia , Genoma , Humanos , Óperon , RNA Bacteriano/análise , RNA Ribossômico/análise , RNA Ribossômico/genética , Ribossomos/genética
7.
J Biol Chem ; 290(39): 23656-69, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26272746

RESUMO

Members of the Swi2/Snf2 (switch/sucrose non-fermentable) family depend on their ATPase activity to mobilize nucleic acid-protein complexes for gene expression. In bacteria, RapA is an RNA polymerase (RNAP)-associated Swi2/Snf2 protein that mediates RNAP recycling during transcription. It is known that the ATPase activity of RapA is stimulated by its interaction with RNAP. It is not known, however, how the RapA-RNAP interaction activates the enzyme. Previously, we determined the crystal structure of RapA. The structure revealed the dynamic nature of its N-terminal domain (Ntd), which prompted us to elucidate the solution structure and activity of both the full-length protein and its Ntd-truncated mutant (RapAΔN). Here, we report the ATPase activity of RapA and RapAΔN in the absence or presence of RNAP and the solution structures of RapA and RapAΔN either ligand-free or in complex with RNAP. Determined by small-angle x-ray scattering, the solution structures reveal a new conformation of RapA, define the binding mode and binding site of RapA on RNAP, and show that the binding sites of RapA and σ(70) on the surface of RNAP largely overlap. We conclude that the ATPase activity of RapA is inhibited by its Ntd but stimulated by RNAP in an allosteric fashion and that the conformational changes of RapA and its interaction with RNAP are essential for RNAP recycling. These and previous findings outline the functional cycle of RapA, which increases our understanding of the mechanism and regulation of Swi2/Snf2 proteins in general and of RapA in particular. The new structural information also leads to a hypothetical model of RapA in complex with RNAP immobilized during transcription.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Alostérica , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/enzimologia , Conformação Proteica , Espalhamento a Baixo Ângulo , Transcrição Gênica , Difração de Raios X
8.
Nucleic Acids Res ; 42(22): 13696-705, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25416798

RESUMO

In a fast-growing Escherichia coli cell, most RNA polymerase (RNAP) is allocated to rRNA synthesis forming transcription foci at clusters of rrn operons or bacterial nucleolus, and each of the several nascent nucleoids contains multiple pairs of replication forks. The composition of transcription foci has not been determined. In addition, how the transcription machinery is three-dimensionally organized to promote cell growth in concord with replication machinery in the nucleoid remains essentially unknown. Here, we determine the spatial and functional landscapes of transcription and replication machineries in fast-growing E. coli cells using super-resolution-structured illumination microscopy. Co-images of RNAP and DNA reveal spatial compartmentation and duplication of the transcription foci at the surface of the bacterial chromosome, encompassing multiple nascent nucleoids. Transcription foci cluster with NusA and NusB, which are the rrn anti-termination system and are associated with nascent rRNAs. However, transcription foci tend to separate from SeqA and SSB foci, which track DNA replication forks and/or the replisomes, demonstrating that transcription machinery and replisome are mostly located in different chromosomal territories to maintain harmony between the two major cellular functions in fast-growing cells. Our study suggests that bacterial chromosomes are spatially and functionally organized, analogous to eukaryotes.


Assuntos
DNA Polimerase Dirigida por DNA/análise , Escherichia coli/genética , Complexos Multienzimáticos/análise , Transcrição Gênica , Proteínas de Bactérias/análise , Replicação do DNA , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/análise , Genes de RNAr , Fatores de Alongamento de Peptídeos/análise , Proteínas de Ligação a RNA/análise , Fatores de Transcrição/análise , Fatores de Elongação da Transcrição
10.
Nucleic Acids Res ; 41(1): 315-26, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23093594

RESUMO

The thermodynamic association of RNA polymerase (RNAP) with DNA is sensitive to salt concentration in vitro. Paradoxically, previous studies of changes in osmolarity during steady-state cell growth found no dependence between the association of RNAP to DNA and K(+) concentration in Escherichia coli. We reevaluated this issue by following the interaction of RNAP and genomic DNA in time-course experiments during the hyper-osmotic response. Our results show that the interaction is temporally controlled by the same physical chemistry principle in the cell as in vitro. RNAP rapidly dissociates from the genome during the initial response when the cytoplasmic K(+) accumulates transiently, and concurrently the nucleoid becomes hyper-condensed. The freed RNAP re-associates with the genome during a subsequent osmoadaptation phase when organic osmoprotectants accumulate as K(+) levels decrease. RNAP first surrounds the hyper-condensed nucleoid forming a sphere of RNAP before it progressively moves in to the center of the nucleoid. Our findings reinterpret the dynamic protein-DNA interactions during osmotic stress response. We discuss the implications of the dissociation/association of RNAP for osmotic protection and nucleoid structure.


Assuntos
DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Estresse Fisiológico , Citoplasma/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Fatores Hospedeiros de Integração/metabolismo , Pressão Osmótica , Potássio/metabolismo , Estresse Fisiológico/genética
11.
J Biol Chem ; 288(4): 2689-99, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23223234

RESUMO

The fidelity of RNA synthesis depends on both accurate template-mediated nucleotide selection and proper maintenance of register between template and RNA. Loss of register, or transcriptional slippage, is particularly likely on homopolymeric runs in the template. Transcriptional slippage can alter the coding capacity of mRNAs and is used as a regulatory mechanism. Here we describe mutations in the largest subunit of Saccharomyces cerevisiae RNA polymerase II that substantially increase the level of transcriptional slippage. Alleles of RPB1 (RPO21) with elevated slippage rates were identified among 6-azauracil-sensitive mutants and were also isolated using a slippage-dependent reporter gene. Biochemical characterization of polymerase II isolated from these mutants confirms elevated levels of transcriptional slippage.


Assuntos
Regulação Fúngica da Expressão Gênica , Mutação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , Cromossomos/ultraestrutura , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Oligonucleotídeos/genética , Ligação Proteica , RNA/metabolismo , Transcrição Gênica , beta-Galactosidase/metabolismo
12.
J Biol Chem ; 288(4): 2700-10, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23223236

RESUMO

Transcription fidelity is critical for maintaining the accurate flow of genetic information. The study of transcription fidelity has been limited because the intrinsic error rate of transcription is obscured by the higher error rate of translation, making identification of phenotypes associated with transcription infidelity challenging. Slippage of elongating RNA polymerase (RNAP) on homopolymeric A/T tracts in DNA represents a special type of transcription error leading to disruption of open reading frames in Escherichia coli mRNA. However, the regions in RNAP involved in elongation slippage and its molecular mechanism are unknown. We constructed an A/T tract that is out of frame relative to a downstream lacZ gene on the chromosome to examine transcriptional slippage during elongation. Further, we developed a genetic system that enabled us for the first time to isolate and characterize E. coli RNAP mutants with altered transcriptional slippage in vivo. We identified several amino acid residues in the ß subunit of RNAP that affect slippage in vivo and in vitro. Interestingly, these highly clustered residues are located near the RNA strand of the RNA-DNA hybrid in the elongation complex. Our E. coli study complements an accompanying study of slippage by yeast RNAP II and provides the basis for future studies on the mechanism of transcription fidelity.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Mutação , Transcrição Gênica , Sequência de Aminoácidos , Sequência de Bases , Cromossomos/ultraestrutura , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/enzimologia , Óperon Lac , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Plasmídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos
13.
BMC Microbiol ; 12: 231, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23051860

RESUMO

BACKGROUND: Enterohemorrhagic Escherichia coli (EHEC) colonizes the intestinal epithelium and causes attaching and effacing (A/E) lesions. Expression of virulence genes, particularly those from the locus of the enterocyte effacement (LEE) pathogenicity island is required for the formation of a type three secretion system, which induces A/E lesion formation. Like other horizontally acquired genetic elements, expression of the LEE is negatively regulated by H-NS. In the non-pathogenic Escherichia coli K-12 strain the stringent starvation protein A (SspA) inhibits accumulation of H-NS, and thereby allows de-repression of the H-NS regulon during the stationary phase of growth. However, the effect of SspA on the expression of H-NS-controlled virulence genes in EHEC is unknown. RESULTS: Here we assess the effect of SspA on virulence gene expression in EHEC. We show that transcription of virulence genes including those of the LEE is decreased in an sspA mutant, rendering the mutant strain defective in forming A/E lesions. A surface exposed pocket of SspA is functionally important for the regulation of the LEE and for the A/E phenotype. Increased expression of ler alleviates LEE expression in an sspA mutant, suggesting that the level of Ler in the mutant is insufficient to counteract H-NS-mediated repression. We demonstrate that the H-NS level is two-fold higher in an sspA mutant compared to wild type, and that the defects of the sspA mutant are suppressed by an hns null mutation, indicating that hns is epistatic to sspA in regulating H-NS repressed virulence genes. CONCLUSIONS: SspA positively regulates the expression of EHEC virulence factors by restricting the intracellular level of H-NS. Since SspA is conserved in many bacterial pathogens containing horizontally acquired pathogenicity islands controlled by H-NS, our study suggests a common mechanism whereby SspA potentially regulates the expression of virulence genes in these pathogens.


Assuntos
Escherichia coli Êntero-Hemorrágica/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas , Fatores de Virulência/biossíntese , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Transcrição Gênica
14.
Biochim Biophys Acta ; 1819(7): 694-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22366339

RESUMO

Accurate transcription is an essential step in maintaining genetic information. Error-prone transcription has been proposed to contribute to cancer, aging, adaptive mutagenesis, and mutagenic evolution of retroviruses and retrotransposons. The mechanisms controlling transcription fidelity and the biological consequences of transcription errors are poorly understood. Because of the transient nature of mRNAs and the lack of reliable experimental systems, the identification and characterization of defects that increase transcription errors have been particularly challenging. In this review we describe novel genetic screens for the isolation of fidelity mutants in both Saccharomyces cerevisiae and Escherichia coli RNA polymerases. We obtained and characterized two distinct classes of mutants altering NTP misincorporation and transcription slippage both in vivo and in vitro. Our study not only validates the genetic schemes for the isolation of RNA polymerase mutants that alter fidelity, but also sheds light on the mechanism of transcription accuracy. This article is part of a Special Issue entitled: Chromatin in time and space.


Assuntos
Proteínas de Escherichia coli/genética , Mutação , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Motivos de Aminoácidos , Sequência de Bases , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Humanos , RNA Polimerase II/metabolismo , RNA Polimerase II/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
15.
FEMS Microbiol Rev ; 36(2): 269-87, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21569058

RESUMO

Growth rate regulation in bacteria has been an important issue in bacterial physiology for the past 50 years. This review, using Escherichia coli as a paradigm, summarizes the mechanisms for the regulation of rRNA synthesis in the context of systems biology, particularly, in the context of genome-wide competition for limited RNA polymerase (RNAP) in the cell under different growth conditions including nutrient starvation. The specific location of the seven rrn operons in the chromosome and the unique properties of the rrn promoters contribute to growth rate regulation. The length of the rrn transcripts, coupled with gene dosage effects, influence the distribution of RNAP on the chromosome in response to growth rate. Regulation of rRNA synthesis depends on multiple factors that affect the structure of the nucleoid and the allocation of RNAP for global gene expression. The magic spot ppGpp, which acts with DksA synergistically, is a key effector in both the growth rate regulation and the stringent response induced by nutrient starvation, mainly because the ppGpp level changes in response to environmental cues. It regulates rRNA synthesis via a cascade of events including both transcription initiation and elongation, and can be explained by an RNAP redistribution (allocation) model.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
16.
Biochim Biophys Acta ; 1809(9): 470-5, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21419241

RESUMO

One of the hallmarks of the Swi2/Snf2 family members is their ability to modify the interaction between DNA-binding protein and DNA in controlling gene expression. The studies of Swi2/Snf2 have been mostly focused on their roles in chromatin and/or nucleosome remodeling in eukaryotes. A bacterial Swi2/Snf2 protein named RapA from Escherichia coli is a unique addition to these studies. RapA is an RNA polymerase (RNAP)-associated protein and an ATPase. It binds nucleic acids including RNA and DNA. The ATPase activity of RapA is stimulated by its interaction with RNAP, but not with nucleic acids. RapA and the major sigma factor σ70 compete for binding to core RNAP. After one transcription cycle in vitro, RNAP is immobilized in an undefined posttranscription/posttermination complex (PTC), thus becoming unavailable for reuse. RapA stimulates RNAP recycling by ATPase-dependent remodeling of PTC, leading to the release of sequestered RNAP, which then becomes available for reuse in another cycle of transcription. Recently, the crystal structure of RapA that is also the first full-length structure for the entire Swi2/Snf2 family was determined. The structure provides a framework for future studies of the mechanism of RNAP recycling in transcription. This article is part of a Special Issue entitled: Snf2/Swi2 ATPase structure and function.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
17.
Mol Microbiol ; 77(3): 618-27, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20553390

RESUMO

Helicobacter pylori persists deep in the human gastric mucus layer in a harsh, nutrient-poor environment. Survival under these conditions depends on the ability of this human pathogen to invoke starvation/stress responses when needed. Unlike many bacteria, H. pylori lacks starvation/stress-responding alternative sigma factors, suggesting an additional mechanism might have evolved in this bacterium. Helicobacter pylori produces polyphosphate; however, the role and target of polyphosphate during starvation/stress have not been identified. Here we show that polyphosphate accumulated during nutrient starvation directly targets transcriptional machinery by binding to the principal sigma factor in H. pylori, uncovering a novel mechanism in microbial stress response. A positively charged Lys-rich region at the N-terminal domain of the major sigma factor is identified as the binding region for polyphosphate (region P) in vivo and in vitro, revealing a new element in sigma 70 family proteins. This interaction is biologically significant because mutant strains defective in the interaction undergo premature cell death during starvation. We suggested that polyphosphate is a second messenger employed by H. pylori to mediate gene expression during starvation/stress. The putative 'region P' is present in sigma factors of other human pathogens, suggesting that the uncovered interaction might be a general strategy employed by other pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Helicobacter pylori/metabolismo , Polifosfatos/metabolismo , Fator sigma/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/química , Helicobacter pylori/genética , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Fator sigma/química , Fator sigma/genética
18.
J Bacteriol ; 191(13): 4180-5, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19395497

RESUMO

In Escherichia coli the genome must be compacted approximately 1,000-fold to be contained in a cellular structure termed the nucleoid. It is proposed that the structure of the nucleoid is determined by a balance of multiple compaction forces and one major expansion force. The latter is mediated by transertion, a coupling of transcription, translation, and translocation of nascent membrane proteins and/or exported proteins. In supporting this notion, it has been shown consistently that inhibition of transertion by the translation inhibitor chloramphenicol results in nucleoid condensation due to the compaction forces that remain active in the cell. Our previous study showed that during optimal growth, RNA polymerase is concentrated into transcription foci or "factories," analogous to the eukaryotic nucleolus, indicating that transcription and RNA polymerase distribution affect the nucleoid structure. However, the interpretation of the role of transcription in the structure of the nucleoid is complicated by the fact that transcription is implicated in both compacting forces and the expansion force. In this work, we used a new approach to further examine the effect of transcription, specifically from rRNA operons, on the structure of the nucleoid, when the major expansion force was eliminated. Our results showed that transcription is necessary for the chloramphenicol-induced nucleoid compaction. Further, an active transcription from multiple rRNA operons in chromosome is critical for the compaction of nucleoid induced by inhibition of translation. All together, our data demonstrated that transcription of rRNA operons is a key mechanism affecting genome compaction and nucleoid structure.


Assuntos
Cromossomos Bacterianos/genética , Escherichia coli/genética , Transcrição Gênica/genética , Óperon de RNAr/genética , Cloranfenicol/farmacologia , Cromossomos Bacterianos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Microscopia
19.
J Bacteriol ; 190(24): 8025-32, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18835987

RESUMO

In Helicobacter pylori the stringent response is mediated solely by spoT. The spoT gene is known to encode (p)ppGpp synthetase activity and is required for H. pylori survival in the stationary phase. However, neither the hydrolase activity of the H. pylori SpoT protein nor the role of SpoT in the regulation of growth during serum starvation and intracellular survival of H. pylori in macrophages has been determined. In this study, we examined the effects of SpoT on these factors. Our results showed that the H. pylori spoT gene encodes a bifunctional enzyme with both a hydrolase activity and the previously described (p)ppGpp synthetase activity, as determined by introducing the gene into Escherichia coli relA and spoT defective strains. Also, we found that SpoT mediates a serum starvation response, which not only restricts the growth but also maintains the helical morphology of H. pylori. Strikingly, a spoT null mutant was able to grow to a higher density in serum-free medium than the wild-type strain, mimicking the "relaxed" growth phenotype of an E. coli relA mutant during amino acid starvation. Finally, SpoT was found to be important for intracellular survival in macrophages during phagocytosis. The unique role of (p)ppGpp in cell growth during serum starvation, in the stress response, and in the persistence of H. pylori is discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Helicobacter pylori/crescimento & desenvolvimento , Ligases/metabolismo , Macrófagos/microbiologia , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Clonagem Molecular , Meios de Cultura Livres de Soro , DNA Bacteriano/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Genes Bacterianos , Teste de Complementação Genética , Helicobacter pylori/enzimologia , Helicobacter pylori/genética , Ligases/genética , Camundongos , Viabilidade Microbiana , Mutação , Transformação Bacteriana
20.
Structure ; 16(9): 1417-27, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18786404

RESUMO

RapA, as abundant as sigma70 in the cell, is an RNA polymerase (RNAP)-associated Swi2/Snf2 protein with ATPase activity. It stimulates RNAP recycling during transcription. We report a structure of RapA that is also a full-length structure for the entire Swi2/Snf2 family. RapA contains seven domains, two of which exhibit novel protein folds. Our model of RapA in complex with ATP and double-stranded DNA (dsDNA) suggests that RapA may bind to and translocate on dsDNA. Our kinetic template-switching assay shows that RapA facilitates the release of sequestered RNAP from a posttranscrption/posttermination complex for transcription reinitiation. Our in vitro competition experiment indicates that RapA binds to core RNAP only but is readily displaceable by sigma70. RapA is likely another general transcription factor, the structure of which provides a framework for future studies of this bacterial Swi2/Snf2 protein and its important roles in RNAP recycling during transcription.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiologia , Transcrição Gênica/fisiologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Ligação Competitiva , Domínio Catalítico/fisiologia , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/fisiologia , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Fator sigma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...