Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMB Rep ; 44(12): 799-804, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22189683

RESUMO

Gangliosides play an important role in neuronal differentiation processes. The regulation of ganglioside levels is related to the induction of neuronal cell differentiation. In this study, the ST8Sia5 gene was transfected into mESCs and then differentiated into neuronal cells. Interestingly, ST8Sia5 gene transfected mESCs expressed GQ1b by HPTLC and immunofluorescence analysis. To investigate the effects of GQ1b over-expression in neurogenesis, neuronal cells were differentiated from GQ1b expressing mESCs in the presence of retinoic acid. In GQ1b expressing mESCs, increased EBs formation was observed. After 4 days, EBs were co-localized with GQ1b and nestin, and GFAP. Moreover, GQ1b co-localized with MAP-2 expressing cells in GQ1b expressing mESCs in 7-day-old EBs. Furthermore, GQ1b expressing mESCs increased the ERK1/2 MAP kinase pathway. These results suggest that the ST8Sia5 gene increases ganglioside GQ1b and improves neuronal differentiation via the ERK1/2 MAP kinase pathway.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Gangliosídeos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Células Cultivadas , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo
2.
Biochem Biophys Res Commun ; 371(4): 866-71, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18471991

RESUMO

Gangliosides are sialic acid-conjugated glycosphingolipids that are believed to regulate cell differentiation as well as the signals of several signal molecules, including epidermal growth factor receptors (EGFR). These compounds are localized in a glycosphingolipid-enriched microdomain on the cell surface and regulated by the glycosphingolipid composition. However, the role that gangliosides play in osteoblastogenesis is not yet clearly understood, therefore, in this study, the relationship between gangliosides and EGFR activation was investigated during osteoblast differentiation in human mesenchymal stem cells (hMSCs). The results of high-performance thin-layer chromatography (HPTLC) showed that ganglioside GM3 expression was decreased, whereas ganglioside GD1a expression was increased during the differentiation of hMSCs into osteoblasts. In addition, an increase in the activation of alkaline phosphatase (ALP) was observed in response to treatment with EGF (5 ng/ml) and GD1a (1 microM) (p<0.05). The activation of ALP was significantly elevated in response to treatment of ganglioside GD1a with EGF when compared to control cells (p<0.01). However, treatment with GM3 (1muM) resulted in decreased ALP activation (p<0.01), and treatment of hMSCs with a chemical inhibitor of EGFR, AG1478, removed the differential effect of the two gangliosides. Moreover, incubation of the differentiating cells with GD1a enhanced the phosphorylation of EGFR, whereas treatment with GM3 reduced the EGFR phosphorylation. However, AG1478 treatment inhibited the effect of ganglioside GD1a elicitation on EGFR phosphorylation. Taken together, these results indicate that GD1a promotes osteoblast differentiation through the enhancement of EGFR phosphorylation, but that GM3 inhibits osteoblast differentiation through reduced EGFR phosphorylation, suggesting that GM3 and GD1a are essential molecules for regulating osteoblast differentiation in hMSCs.


Assuntos
Diferenciação Celular , Receptores ErbB/metabolismo , Gangliosídeo G(M3)/fisiologia , Gangliosídeos/fisiologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Fosfatase Alcalina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/agonistas , Gangliosídeo G(M3)/farmacologia , Gangliosídeos/farmacologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas , Tirfostinas/farmacologia
3.
Arch Pharm Res ; 31(1): 88-95, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18277613

RESUMO

Gangliosides are a family of sialic acid-containing glycosphingolipids that are abundant in neurons and have a variety of functions in developing and mature tissues. We examined the expression of ganglioside GT1b in the embryonic preimplantation stage after freezing and thawing processes to determine the regulatory roles of ganglioside GT1b in early embryonic development. ICR mouse embryos at the two-cell stage obtained by flushing the oviducts were frozen by two cryopreservation procedures, slow freezing using a programmable freezer or vitrification by direct plunging into liquid nitrogen. Slow freezing was conducted with equilibration in 1.5 M 1,2-propanediol or 5% equilibration glycerol. Vitrification was applied with a 10-15 min equilibration in 7.5% ethylene glycol (EG), 7.5% dimethylsulfoxide (DMSO), and 30 sec in a solution of 15% EG, 15% DMSO and 0.5 M sucrose. Immediately after thawing, the survival rate of the embryos was assessed by their morphology and ability to develop to blastocysts in culture. The survival rate of vitrified and thawed embryos (92%) was significantly higher than that of slow frozen and thawed embryos (76%) (P<0.05). A tendency of higher blastocyst rate was found in the vitrified and thawed embryos compared to that of the slow frozen and thawed embryos. Confocal immunofluorescence staining confirmed that surviving embryos expressed ganglioside GT1b, with the strongest expression at the compacted eight-cell or later stage embryos. Ganglioside GT1b was not observed in the TUNEL-positive, apoptotic embryos, suggesting that cryopreservation had induced DNA breaks in them. These results suggest that ganglioside GT1b may play an important role in embryo survival or development.


Assuntos
Desenvolvimento Embrionário/fisiologia , Gangliosídeos/biossíntese , Animais , Apoptose/efeitos dos fármacos , Blastocisto/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Criopreservação , Feminino , Imunofluorescência , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mórula/metabolismo , Gravidez , Zona Pelúcida/efeitos dos fármacos , Zona Pelúcida/ultraestrutura
4.
Biochem Biophys Res Commun ; 362(2): 313-8, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17707770

RESUMO

Gangliosides are implicated in neuronal development processes. The regulation of ganglioside levels is closely related to the induction of neuronal cell differentiation. In this study, the relationship between ganglioside expression and neuronal cell development was investigated using an in vitro model of neural differentiation from mouse embryonic stem (mES) cells. Daunorubicin (DNR) was applied to induce the expression of gangliosides in embryoid body (EB) (4+). We observed an increase in expression of gangliosides in all stages of EBs by treatment of DNR (2microM). High-performance thin-layer chromatography (HPTLC) showed that gangliosides GD3, GD1a, GT1b, and GQ1b increased in DNR-treated 7-day-old EB (4+) [EB (4+):7]. DNR treatment significantly increased the expression of gangliosides, especially GT1b and GQ1b in comparison to control cells. Interestingly, GQ1b co-localized with microtubule-associated protein 2 (MAP-2) expressing cells in DNR-treated EB (4+):7. The co-localization of GQ1b and MAP-2 was found in neurite-bearing cells in DNR-treated 15-day-old EB (4+) [EB (4+):15], whereas no significant expression of GQ1b and less neurite formation were observed in untreated control. Also, the expression of synaptophysin and NF200, both neuronal markers associated with neruites, was increased by DNR treatment. These results demonstrate that DNR increases expression of gangliosides, especially GQ1b, in differentiating neuronal cells. Further, neurite-bearing neuronal cell differentiation can be facilitated by DNR, possibly through the induction of gangliosides. Thus, the present data suggest that DNR is beneficial for facilitating neuronal differentiation from ES cells and among the gangliosides analyzed in the present study, GQ1b is mainly involved in neurite formation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Daunorrubicina/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Gangliosídeos/biossíntese , Neurônios/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Imuno-Histoquímica , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA