Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 35: 330-345, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38379700

RESUMO

The management of chronic wounds in diabetes remains challenging due to the complexity of impaired wound healing, delayed healing, susceptibility to infection, and elevated risk of reopening, highlighting the need for effective chronic wound management with innovative approaches such as multifunctional hydrogels. Here, we have produced HA-DA@rhCol hydrogels consisting of dopamine-modified hyaluronic acid and recombinant human collagen type-III (rhCol) by oxidative coupling of the catechol group using the H2O2/HRP catalytic system. The post-reactive hydrogel has a good porous structure, swelling rate, reasonable degradation, rheological and mechanical properties, and the catechol group and dopamine impart to the hydrogel tissue adhesiveness, antioxidant capacity, and excellent photothermal effects leading to superior in vitro antimicrobial activity. In addition, the ability of rhCol to confer hydrogels to promote angiogenesis and wound repair has also been investigated. Cytotoxicity and hemolysis tests demonstrated the good biocompatibility of the hydrogel. Wound closure, collagen deposition and immunohistochemical examination confirmed the ability of the hydrogel to promote diabetic wound healing. In summary, the adhesive hemostatic antioxidative hydrogel with rhCol to promote wound healing in diabetic rat is an excellent chronic wound dressing.

2.
Mater Today Bio ; 15: 100320, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35757026

RESUMO

Long-term non-healing diabetic wounds are always a serious challenge and a global healthcare burden that needs to be resolved urgently in the clinic. Prolonged inflammation and impaired angiogenesis are the main direct causes of diabetic wounds. With the development of polymer biomaterials, various wound dressings have been created, but a few of them have been applied to the clinical management of diabetic wounds. Here, we developed a mussel-inspired bioactive scaffold consisting mainly of collagen and hyaluronic acid, which are natural biopolymer materials contained in human tissues. First, we fabricated different polydopamine modified lyophilized collagen hyaluronic acid scaffolds under different concentrations of dopamine alkaline solutions, 0.5, 1, 2 â€‹mg/mL, so named CHS-PDA-0.5, CHS-PDA-1, CHS-PDA-2. After testing their physical and chemical properties, antioxidant effect, inflammation regulation, as well as drug loading and release capabilities, we obtained a bioactive endothelial growth factor (EGF)-loaded wound dressing, CHS-PDA-2@EGF, which can resist reactive oxygen species (ROS) and promote the regeneration of chronic wounds in diabetic rats by reducing inflammation. In addition, the scaffold showed excellent swelling ability, a certain coagulation effect and reasonable degradation. Therefore, the scaffold has great potential to be used in clinical diabetic wound treatment as a low-cost and easily available wound dressing to accelerate chronic wound healing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA