Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 3968607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694604

RESUMO

This paper aims to explore the seismic mechanical properties of newly developed fabricated aerated lightweight concrete (ALC) wall panels to clarify the interaction mechanism between wall panels and structures. It first introduces the lightweight deep learning object detection algorithm and constructs a network model with faster operation speed based on the convolutional neural network. Secondly, combined with the deep learning object detection algorithm, the quasi-static loading system is adopted to conduct the repeated loading test on two fabricated ALC wall panels. Finally, the hysteresis load-displacement curve of each test is recorded. The experimental results show that the proposed deep learning algorithm greatly improves the operation speed and compresses the model size without reducing the accuracy. The lightweight deep learning algorithm is applied to the study of the slip performance of the wall plate. The pretightening force of the connecting screw characterizes the slip performance between the wall plate and the structural beam, thereby affecting the deformation response of the wall plate when the interstory displacement increases. The hysteresis curve of the ALC wall panel has obvious squeezing effect, indicating that the slip of the connector can unload part of the external load and delay the damage of the wall panel. The skeleton curve suggests that the fabricated windowless ALC wall panel has higher positive and negative initial stiffness and bearing capacity than the fabricated windowed wall panel. However, the degradation analysis of the stiffness curve reveals that the lateral stiffness deviation of the fabricated windowless ALC wall panel is more obvious. It confirms that the proposed connection method based on the lightweight deep learning model can improve the seismic performance of ALC wall panels and provide reference for the structural analysis of embedding fabricated ALC wall panels. This work shows the important practical value for exploring the application effect of embedded ALC wall panels.

2.
J Hazard Mater ; 377: 132-141, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31158582

RESUMO

Hydrogen chloride (HCl) non-thermal plasma was applied to introduce Cl active sites on biochar prepared from sorghum straw in this study. Surface modified biochar was then placed in flue gas with typical components to investigate its elemental mercury (Hg0) capture ability. To elucidate the adsorption mechanism & binding properties, samples were characterized by N2 adsorption, scanning electron microscopy with energy dispersive spectrometer (SEM-EDS) and X-ray absorption near edge structure (XANES) analysis of Hg LIII-edge, Cl K-edge and S K-edge. Experimental results showed that HCl plasma modification successfully increased Cl active sites on biochar and greatly increased its mercury removal efficiency. Both HCl treatments (w/without plasma involvement) altered biochar's surface structure and layered structure generated. XANES spectra revealed that adsorbed-Hg on HCl-treated biochars mainly in the form of Hg+. Gaseous Hg0 was believed to heterogeneously react with chlorinated sites through electron-transfer and formed Hg2Cl2 compounds. With the presence of NO or SO2 in the system, adsorbed mercury existed on biochar mainly as Hg+. SO2 competed and inhibited the adsorption of Hg0; while NO promoted Hg0 removal capacity by increasing the active sites and enhancing the adsorption kinetics of adjacent Cl-containing sites.


Assuntos
Carvão Vegetal/química , Gases/isolamento & purificação , Ácido Clorídrico/química , Mercúrio/isolamento & purificação , Adsorção , Epicloroidrina , Microscopia Eletrônica de Varredura , Estrutura Molecular , Óxido Nítrico , Nitrogênio/química , Dióxido de Enxofre/química , Difração de Raios X
3.
J Hazard Mater ; 376: 21-28, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31102952

RESUMO

The effect of physicochemical properties of activated carbon on adsorption of elemental mercury (Hg0) was investigated on a series of modified activated carbons. Heat treatment and benzoic acid impregnation were conducted to vary the oxygen functional groups on carbon surface. Hg0 adsorption experiments were run in a fixed-bed reactor at 140 °C. Surface characteristics of carbon samples were studied by N2 adsorption, Boehm titration, X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS), respectively. The predominant mechanism of Hg0 removal was the formation of chemical bonds between Hg and various functional groups. Both XPS and XAFS analysis revealed that mercury bound on carbon surface was mainly in oxidation state. Under N2 atmosphere, the absorbed Hg was found as Hg2+, and coordinated to O atom. With the existence of HCl in simulated flue gas, Hg0 was bonded on Cl sites and HgCl2 was assumed to be the dominated form.

4.
J Colloid Interface Sci ; 490: 154-162, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27912113

RESUMO

In this work, TiO2-CdS-gCNNSs heterojunction photocatalysts were successfully synthesized. CdS was deposited on the surface of gCNNSs via electrostatic attraction; TiOC, TiOCO and TiON bonds were produced in TiO2-CdS-gCNNSs, strengthening the interaction between TiO2 and gCNNSs. The TiO2-CdS-gCNNSs photocatalyst showed excellent photocatalytic activity for phenol degradation under visible-light irradiation, which was higher than that of CdS-gCNNSs, CdS-TiO2 and TiO2-gCNNSs. The improved photocatalytic performance of TiO2-CdS-gCNNSs was ascribed to more adsorption sites, enhanced light harvesting ability and effective separation rate of electron-hole pairs. Furthermore, the results of photocatalytic mechanism indicated that h+ and O2- played a more significant role on the phenol degradation.

5.
J Complement Integr Med ; 12(1): 43-51, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25390029

RESUMO

BACKGROUND: Although some studies in the southeast part of Guizhou Province have suggested that Miaoyao Fanggan sachets (MFS) prevent influenza, little is known about its influence on immune systems. Influenza virus mainly infects immune-compromised individuals. The effects of MFS have mainly been recognized in clinical practice. However, there have been relatively few studies on its biological mechanism. Here we investigated whether MFS was able to affect the mucosal immunization and the activation of alveolar macrophages (AM), CD4+and CD8+ T-cells in vivo. METHODS: Eighty Kunming male mice were treated with MFS continuously or intermittently with Yu-Ping-Feng powder (YPF-P) (positive control group) or with normal saline (NS) (control group) for 4 weeks, respectively. Mice treated with MFS were further divided into the continuous inhalation group (12 h daily/4 weeks) and the discontinuous inhalation group (1 h, three times a day for 4 weeks). Mice in both groups were placed under 0.5 m3 masks which had four ventilation holes (10×15 cm) containing 40 g MFS. Positive control mice were orally treated with YPF-P 0.2 mg/10 g/day once a day for 4 weeks. Control mice were orally treated with equal volumes of NS once a day for 4 weeks. MFS was replaced every 6 days. Administration of YPF-P was used as a positive control since it has been used as an established Traditional Chinese Medicine (TCM) treatment before. After 4 weeks, mice in all experimental groups were sacrificed. IgA and IgG1 in lung and blood serum were detected by Western blot and enzyme-linked immuno sorbent assay (ELISA). The expression of alveolar macrophages (AM) in mice was analyzed by immunochemistry test based on CD68+staining. Blood samples were collected in which CD4+and CD8+T-cells were analyzed by flow cytometry. RESULTS: Mice continuously and intermittently inhaling MFS showed a moderate increase in IgA and IgG1 protein levels compared with mice in the control groups. There was also a slightly significant increase in the number of AM in the continuous inhalation group compared with mice in the control groups (p<0.05). Furthermore, compared with controls, there was also a slightly significant increase in the number and percentage of CD4+and CD8+T-cells in both the continuous inhalation group and the discontinuous inhalation group (p<0.05). CONCLUSIONS: MFS was able to up-regulate the protein levels of sIgA and IgG1. Meanwhile, MFS could activate AM, CD4+and CD8+T-cells in mice. Our data have, for the first time, demonstrated that the protection against influenza by MFS is partly through activation of the innate and adaptive cell-mediated immune responses, indicating MFS as a potential new immune-modulatory agent for respiratory tract infectious disease.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunoglobulinas/sangue , Influenza Humana/tratamento farmacológico , Fitoterapia , Linfócitos T/metabolismo , Animais , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Influenza Humana/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...