Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 15(4): 405-417, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28119431

RESUMO

In multiple myeloma, osteolytic lesions rarely heal because of persistent suppressed osteoblast differentiation resulting in a high fracture risk. Herein, chromatin immunoprecipitation analyses reveal that multiple myeloma cells induce repressive epigenetic histone changes at the Runx2 locus that prevent osteoblast differentiation. The most pronounced multiple myeloma-induced changes were at the Runx2-P1 promoter, converting it from a poised bivalent state to a repressed state. Previously, it was observed that multiple myeloma induces the transcription repressor GFI1 in osteoblast precursors, which correlates with decreased Runx2 expression, thus prompting detailed characterization of the multiple myeloma and TNFα-dependent GFI1 response element within the Runx2-P1 promoter. Further analyses reveal that multiple myeloma-induced GFI1 binding to Runx2 in osteoblast precursors and recruitment of the histone modifiers HDAC1, LSD1, and EZH2 is required to establish and maintain Runx2 repression in osteogenic conditions. These GFI1-mediated repressive chromatin changes persist even after removal of multiple myeloma. Ectopic GFI1 is sufficient to bind to Runx2, recruit HDAC1 and EZH2, increase H3K27me3 on the gene, and prevent osteogenic induction of endogenous Runx2 expression. Gfi1 knockdown in MC4 cells blocked multiple myeloma-induced recruitment of HDAC1 and EZH2 to Runx2, acquisition of repressive chromatin architecture, and suppression of osteoblast differentiation. Importantly, inhibition of EZH2 or HDAC1 activity in pre-osteoblasts after multiple myeloma exposure in vitro or in osteoblast precursors from patients with multiple myeloma reversed the repressive chromatin architecture at Runx2 and rescued osteoblast differentiation.Implications: This study suggests that therapeutically targeting EZH2 or HDAC1 activity may reverse the profound multiple myeloma-induced osteoblast suppression and allow repair of the lytic lesions. Mol Cancer Res; 15(4); 405-17. ©2017 AACR.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histona Desacetilase 1/metabolismo , Mieloma Múltiplo/genética , Osteoblastos/citologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cocultura , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/genética , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Epigênese Genética , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/farmacologia , Humanos , Indóis/administração & dosagem , Indóis/farmacologia , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Osteoblastos/efeitos dos fármacos , Regiões Promotoras Genéticas , Piridonas/administração & dosagem , Piridonas/farmacologia , Fatores de Transcrição/genética
2.
Mol Cell Biochem ; 414(1-2): 13-22, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26833194

RESUMO

Colorectal cancer is a critical health concern because of its incidence as the third most prevalent cancer in the world. Currently, 5-fluorouracil (5-FU), 6-thioguanine, and certain other genotoxic agents are mainstays of treatment; however, patients often die due to emergence of resistant population. Curcumin, a bioactive compound derived from the dietary turmeric (Curcuma longa) is an effective anticancer, anti-inflammatory, and antioxidant agent. Previously, we reported that human colorectal cancer cell lines compromised for mismatch repair (MMR) function exhibit heightened sensitivity to curcumin due to sustained curcumin-induced unrepaired DNA damage compared to proficient population counterparts. In this report, we show that the protein levels of gadd45α, whose transcript levels are increased during DNA damage and stress signals, are upregulated following curcumin treatment in a dose- and time-dependent manner. We further observed that cells compromised for Mlh1 function (HCT116 + Ch2) displayed ~twofold increased GADD45α upregulation compared to similarly treated proficient counterparts (HCT116 + Ch3). Similarly, suppression of Mlh1 using ShRNA increased GADD45α upregulation upon curcumin treatment. On the other hand, suppression of GADD45α using SiRNA-blocked curcumin-induced cell death induction in Mlh1-deficient cells. Moreover, inhibition of Abl through ST571 treatment and its downstream effector JNK through SP600125 treatment blocked GADD45α upregulation and cell death triggered by curcumin. Collective results lead us to conclude that GADD45α modulates curcumin sensitivity through activation of c-Abl > JNK signaling in a mismatch repair-dependent manner.


Assuntos
Pareamento Incorreto de Bases , Proteínas de Ciclo Celular/fisiologia , Curcumina/farmacologia , Reparo do DNA , MAP Quinase Quinase 4/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Humanos
4.
Am J Pathol ; 185(12): 3304-15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26476347

RESUMO

The mechanisms by which drugs induce pancreatitis are unknown. A definite cause of pancreatitis is due to the antiepileptic drug valproic acid (VPA). On the basis of three crucial observations-that VPA inhibits histone deacetylases (HDACs), HDACs mediate pancreas development, and aspects of pancreas development are recapitulated during recovery of the pancreas after injury-we hypothesized that VPA does not cause injury on its own, but it predisposes patients to pancreatitis by inhibiting HDACs and provoking an imbalance in pancreatic recovery. In an experimental model of pancreatic injury, we found that VPA delayed recovery of the pancreas and reduced acinar cell proliferation. In addition, pancreatic expression of class I HDACs (which are the primary VPA targets) increased in the midphase of pancreatic recovery. VPA administration inhibited pancreatic HDAC activity and led to the persistence of acinar-to-ductal metaplastic complexes, with prolonged Sox9 expression and sustained ß-catenin nuclear activation, findings that characterize a delay in regenerative reprogramming. These effects were not observed with valpromide, an analog of VPA that lacks HDAC inhibition. This is the first report, to our knowledge, that VPA shifts the balance toward pancreatic injury and pancreatitis through HDAC inhibition. The work also identifies a new paradigm for therapies that could exploit epigenetic reprogramming to enhance pancreatic recovery and disorders of pancreatic injury.


Assuntos
Células Acinares/efeitos dos fármacos , Anticonvulsivantes/toxicidade , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/fisiologia , Pancreatite/induzido quimicamente , Ácido Valproico/toxicidade , Células Acinares/patologia , Animais , Anticonvulsivantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ceruletídeo , Masculino , Camundongos , Pâncreas/fisiologia , Pancreatite/enzimologia , Pancreatite/patologia , Regeneração/efeitos dos fármacos , Regulação para Cima , Ácido Valproico/farmacologia
5.
Gastroenterology ; 149(3): 753-64.e11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25980752

RESUMO

BACKGROUND & AIMS: Radiocontrast agents are required for radiographic procedures, but these agents can injure tissues by unknown mechanisms. We investigated whether exposure of pancreatic tissues to radiocontrast agents during endoscopic retrograde cholangiopancreatography (ERCP) causes pancreatic inflammation, and studied the effects of these agents on human cell lines and in mice. METHODS: We exposed mouse and human acinar cells to the radiocontrast agent iohexol (Omnipaque; GE Healthcare, Princeton, NJ) and measured intracellular release of Ca(2+), calcineurin activation (using a luciferase reporter), activation of nuclear factor-κB (NF-κB, using a luciferase reporter), and cell necrosis (via propidium iodide uptake). We infused the radiocontrast agent into the pancreatic ducts of wild-type mice (C57BL/6) to create a mouse model of post-ERCP pancreatitis; some mice were given intraperitoneal injections of the calcineurin inhibitor FK506 before and after infusion of the radiocontrast agent. CnAß(-/-) mice also were used. This experiment also was performed in mice given infusions of adeno-associated virus 6-NF-κB-luciferase, to assess activation of this transcription factor in vivo. RESULTS: Incubation of mouse and human acinar cells, but not HEK293 or COS7 cells, with iohexol led to a peak and then plateau in Ca(2+) signaling, along with activation of the transcription factors NF-κB and nuclear factor of activated T cells. Suppressing Ca(2+) signaling or calcineurin with BAPTA, cyclosporine A, or FK506 prevented activation of NF-κB and acinar cell injury. Calcineurin Aß-deficient mice were protected against induction of pancreatic inflammation by iohexol. The calcineurin inhibitor FK506 prevented contrast-induced activation of NF-κB in pancreata of mice, this was observed by live imaging of mice given infusions of adeno-associated virus 6-NF-κB-luciferase. CONCLUSIONS: Radiocontrast agents cause pancreatic inflammation in mice, via activation of NF-κB, Ca(2+) signaling, and calcineurin. Calcineurin inhibitors might be developed to prevent post-ERCP pancreatitis in patients.


Assuntos
Calcineurina/metabolismo , Sinalização do Cálcio , Meios de Contraste , Iohexol , NF-kappa B/metabolismo , Pâncreas Exócrino/enzimologia , Pancreatite/enzimologia , Animais , Células COS , Calcineurina/deficiência , Calcineurina/genética , Inibidores de Calcineurina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Chlorocebus aethiops , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , Necrose , Pâncreas Exócrino/efeitos dos fármacos , Pâncreas Exócrino/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/patologia , Pancreatite/prevenção & controle , Tacrolimo/farmacologia , Fatores de Tempo
6.
Biotechniques ; 58(4): 161-70, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25861928

RESUMO

Restriction enzymes have two major limitations for cloning: they cannot cleave at any desired location in a DNA sequence and may not cleave uniquely within a DNA sequence. In contrast, the clustered regularly interspaced short palindromic repeat (CRISPR)-associated enzyme 9 (Cas9), when coupled with single guide RNAs (sgRNA), has been used in vivo to cleave the genomes of many species at a single site, enabling generation of mutated cell lines and animals. The Cas9/sgRNA complex recognizes a 17-20 base target site, which can be of any sequence as long as it is located 5' of the protospacer adjacent motif (PAM; sequence 5'-NRG, where R = G or A). Thus, it can be programmed to cleave almost anywhere with a stringency higher than that of one cleavage in a sequence of human genome size. Here, the Cas9 enzyme and a specific sgRNA were used to linearize a 22 kb plasmid in vitro. A DNA fragment was then inserted into the linearized vector seamlessly through Gibson assembly. Our technique can be used to directly, and seamlessly, clone fragments into vectors of any size as well as to modify existing constructs where no other methods are available.


Assuntos
Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Clonagem Molecular/métodos , Clivagem do DNA , Endonucleases/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína 9 Associada à CRISPR , Genoma , Camundongos , Plasmídeos/genética , RNA Guia de Cinetoplastídeos/genética
7.
J Biol Chem ; 290(18): 11309-20, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25802340

RESUMO

Nuclear factor κB (NF-κB) is an important signaling molecule that plays a critical role in the development of acute pancreatitis. Current methods for examining NF-κB activation involve infection of an adenoviral NF-κB-luciferase reporter into cell lines or electrophoretic mobility shift assay of lysate. The use of adeno-associated viruses (AAVs) has proven to be an effective method of transfecting whole organs in live animals. We examined whether intrapancreatic duct infusion of AAV containing an NF-κB-luciferase reporter (AAV-NF-κB-luciferase) can reliably measure pancreatic NF-κB activation. We confirmed the infectivity of the AAV-NF-κB-luciferase reporter in HEK293 cells using a traditional luciferase readout. Mice were infused with AAV-NF-κB-luciferase 5 weeks before induction of pancreatitis (caerulein, 50 µg/kg). Unlike transgenic mice that globally express NF-κB-luciferase, AAV-infused mice showed a 15-fold increase in pancreas-specific NF-κB bioluminescence following 12 h of caerulein compared with baseline luminescence (p < 0.05). The specificity of the NF-κB-luciferase signal to the pancreas was confirmed by isolating the pancreas and adjacent organs and observing a predominant bioluminescent signal in the pancreas compared with liver, spleen, and stomach. A complementary mouse model of post-ERCP-pancreatitis also induced pancreatic NF-κB signals. Taken together these data provide the first demonstration that NF-κB activation can be examined in a live, dynamic fashion during pancreatic inflammation. We believe this technique offers a valuable tool to study real-time activation of NF-κB in vivo.


Assuntos
Dependovirus/genética , Medições Luminescentes , Imagem Molecular , NF-kappa B/metabolismo , Pâncreas/metabolismo , Pâncreas/virologia , Animais , Ceruletídeo/metabolismo , Dependovirus/fisiologia , Células HEK293 , Humanos , Luciferases/genética , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , Especificidade de Órgãos , Transdução de Sinais
8.
Mol Oncol ; 9(1): 249-59, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25217103

RESUMO

The Aurora-A gene encodes a serine/threonine protein kinase that is frequently overexpressed in several types of human tumors. The overexpression of Aurora-A has been observed to associate with the grades of differentiation, invasive capability and distant lymph node metastasis of esophageal squamous cell carcinoma (ESCC). However, the molecular mechanism by which Aurora-A promotes malignant development of ESCC is still largely unknown. In this study, we show that Aurora-A overexpression enhances tumor cell invasion and metastatic potential in vitro and in vivo. Furthermore, Aurora-A overexpression inhibits the degradation of ß-catenin, promotes its dissociation from cell-cell contacts and increases its nuclear translocation. We also demonstrate for the first time that Aurora-A directly interacts with ß-catenin and phosphorylates ß-catenin at Ser552 and Ser675. Substitutions of serine residue with alanine at single or both positions substantially attenuate Aurora-A-mediated stabilization of ß-catenin, abolish its cytosolic and nuclear localization as well as transcriptional activity. In addition, Aurora-A overexpression is significantly correlated with increased cytoplasmic ß-catenin expression in ESCC tissues. In view of our results, we propose that Aurora-A-mediated phosphorylation of ß-catenin is a novel mechanism of malignancy development of tumor.


Assuntos
Aurora Quinase A/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Proteínas de Neoplasias/metabolismo , beta Catenina/metabolismo , Aurora Quinase A/genética , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Humanos , Proteínas de Neoplasias/genética , Fosforilação/genética , beta Catenina/genética
9.
Am J Physiol Gastrointest Liver Physiol ; 307(5): G574-81, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25012845

RESUMO

Physiological calcium (Ca(2+)) signals within the pancreatic acinar cell regulate enzyme secretion, whereas aberrant Ca(2+) signals are associated with acinar cell injury. We have previously identified the ryanodine receptor (RyR), a Ca(2+) release channel on the endoplasmic reticulum, as a modulator of these pathological signals. In the present study, we establish that the RyR is expressed in human acinar cells and mediates acinar cell injury. We obtained pancreatic tissue from cadaveric donors and identified isoforms of RyR1 and RyR2 by qPCR. Immunofluorescence staining of the pancreas showed that the RyR is localized to the basal region of the acinar cell. Furthermore, the presence of RyR was confirmed from isolated human acinar cells by tritiated ryanodine binding. To determine whether the RyR is functionally active, mouse or human acinar cells were loaded with the high-affinity Ca(2+) dye (Fluo-4 AM) and stimulated with taurolithocholic acid 3-sulfate (TLCS) (500 µM) or carbachol (1 mM). Ryanodine (100 µM) pretreatment reduced the magnitude of the Ca(2+) signal and the area under the curve. To determine the effect of RyR blockade on injury, human acinar cells were stimulated with pathological stimuli, the bile acid TLCS (500 µM) or the muscarinic agonist carbachol (1 mM) in the presence or absence of the RyR inhibitor ryanodine. Ryanodine (100 µM) caused an 81% and 47% reduction in acinar cell injury, respectively, as measured by lactate dehydrogenase leakage (P < 0.05). Taken together, these data establish that the RyR is expressed in human acinar cells and that it modulates acinar Ca(2+) signals and cell injury.


Assuntos
Células Acinares/metabolismo , Pâncreas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Células Acinares/efeitos dos fármacos , Animais , Cálcio/metabolismo , Carbacol/farmacologia , Morte Celular , Humanos , L-Lactato Desidrogenase/metabolismo , Camundongos , Pâncreas/citologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rianodina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Ácido Taurolitocólico/análogos & derivados , Ácido Taurolitocólico/farmacologia
10.
J Biol Chem ; 288(38): 27128-27137, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23940051

RESUMO

Aberrant Ca(2+) signals within pancreatic acinar cells are an early and critical feature in acute pancreatitis, yet it is unclear how these signals are generated. An important mediator of the aberrant Ca(2+) signals due to bile acid exposure is the intracellular Ca(2+) channel ryanodine receptor. One putative activator of the ryanodine receptor is the nucleotide second messenger cyclic ADP-ribose (cADPR), which is generated by an ectoenzyme ADP-ribosyl cyclase, CD38. In this study, we examined the role of CD38 and cADPR in acinar cell Ca(2+) signals and acinar injury due to bile acids using pharmacologic inhibitors of CD38 and cADPR as well as mice deficient in Cd38 (Cd38(-/-)). Cytosolic Ca(2+) signals were imaged using live time-lapse confocal microscopy in freshly isolated mouse acinar cells during perifusion with the bile acid taurolithocholic acid 3-sulfate (TLCS; 500 µM). To focus on intracellular Ca(2+) release and to specifically exclude Ca(2+) influx, cells were perifused in Ca(2+)-free medium. Cell injury was assessed by lactate dehydrogenase leakage and propidium iodide uptake. Pretreatment with either nicotinamide (20 mM) or the cADPR antagonist 8-Br-cADPR (30 µM) abrogated TLCS-induced Ca(2+) signals and cell injury. TLCS-induced Ca(2+) release and cell injury were reduced by 30 and 95%, respectively, in Cd38-deficient acinar cells compared with wild-type cells (p < 0.05). Cd38-deficient mice were protected against a model of bile acid infusion pancreatitis. In summary, these data indicate that CD38-cADPR mediates bile acid-induced pancreatitis and acinar cell injury through aberrant intracellular Ca(2+) signaling.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Células Acinares/metabolismo , Ácidos e Sais Biliares/toxicidade , Sinalização do Cálcio/efeitos dos fármacos , ADP-Ribose Cíclica/metabolismo , Glicoproteínas de Membrana/metabolismo , Pancreatite/metabolismo , ADP-Ribosil Ciclase 1/genética , Células Acinares/patologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/genética , ADP-Ribose Cíclica/genética , Humanos , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/patologia
11.
J Vis Exp ; (77): e50391, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23851390

RESUMO

The pancreatic acinar cell is the main parenchymal cell of the exocrine pancreas and plays a primary role in the secretion of pancreatic enzymes into the pancreatic duct. It is also the site for the initiation of pancreatitis. Here we describe how acinar cells are isolated from whole pancreas tissue and intracellular calcium signals are measured. In addition, we describe the techniques of transfecting these cells with adenoviral constructs, and subsequently measuring the leakage of lactate dehydrogenase, a marker of cell injury, during conditions that induce acinar cell injury in vitro. These techniques provide a powerful tool to characterize acinar cell physiology and pathology.


Assuntos
Células Acinares/citologia , Células Acinares/metabolismo , Infecções por Adenoviridae/patologia , Técnicas Citológicas/métodos , Pâncreas/citologia , Pâncreas/virologia , Adenoviridae/fisiologia , Animais , Sinalização do Cálcio , Masculino , Camundongos , Pâncreas/metabolismo
12.
J Biol Chem ; 288(29): 21065-21073, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23744075

RESUMO

Biliary pancreatitis is the most common etiology of acute pancreatitis, accounting for 30-60% of cases. A dominant theory for the development of biliary pancreatitis is the reflux of bile into the pancreatic duct and subsequent exposure to pancreatic acinar cells. Bile acids are known to induce aberrant Ca(2+) signals in acinar cells as well as nuclear translocation of NF-κB. In this study, we examined the role of the downstream Ca(2+) target calcineurin on NF-κB translocation. Freshly isolated mouse acinar cells were infected for 24 h with an adenovirus expressing an NF-κB luciferase reporter. The bile acid taurolithocholic acid-3-sulfate caused NF-κB activation at concentrations (500 µm) that were associated with cell injury. We show that the NF-κB inhibitor Bay 11-7082 (1 µm) blocked translocation and injury. Pretreatment with the Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, the calcineurin inhibitors FK506 and cyclosporine A, or use of acinar cells from calcineurin Aß-deficient mice each led to reduced NF-κB activation with taurolithocholic acid-3-sulfate. Importantly, these manipulations did not affect LPS-induced NF-κB activation. A critical upstream regulator of NF-κB activation is protein kinase C, which translocates to the membranes of various organelles in the active state. We demonstrate that pharmacologic and genetic inhibition of calcineurin blocks translocation of the PKC-δ isoform. In summary, bile-induced NF-κB activation and acinar cell injury are mediated by calcineurin, and a mechanism for this important early inflammatory response appears to be upstream at the level of PKC translocation.


Assuntos
Células Acinares/metabolismo , Ácidos e Sais Biliares/farmacologia , Calcineurina/metabolismo , NF-kappa B/metabolismo , Pâncreas/patologia , Células Acinares/efeitos dos fármacos , Células Acinares/patologia , Animais , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Modelos Biológicos , Proteína Quinase C-delta/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ácido Taurolitocólico/análogos & derivados , Ácido Taurolitocólico/farmacologia
13.
J Biol Chem ; 288(1): 570-80, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23148215

RESUMO

Biliary pancreatitis is the leading cause of acute pancreatitis in both children and adults. A proposed mechanism is the reflux of bile into the pancreatic duct. Bile acid exposure causes pancreatic acinar cell injury through a sustained rise in cytosolic Ca(2+). Thus, it would be clinically relevant to know the targets of this aberrant Ca(2+) signal. We hypothesized that the Ca(2+)-activated phosphatase calcineurin is such a Ca(2+) target. To examine calcineurin activation, we infected primary acinar cells from mice with an adenovirus expressing the promoter for a downstream calcineurin effector, nuclear factor of activated T-cells (NFAT). The bile acid taurolithocholic acid-3-sulfate (TLCS) was primarily used to examine bile acid responses. TLCS caused calcineurin activation only at concentrations that cause acinar cell injury. The activation of calcineurin by TLCS was abolished by chelating intracellular Ca(2+). Pretreatment with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (acetoxymethyl ester) (BAPTA-AM) or the three specific calcineurin inhibitors FK506, cyclosporine A, or calcineurin inhibitory peptide prevented bile acid-induced acinar cell injury as measured by lactate dehydrogenase leakage and propidium iodide uptake. The calcineurin inhibitors reduced the intra-acinar activation of chymotrypsinogen within 30 min of TLCS administration, and they also prevented NF-κB activation. In vivo, mice that received FK506 or were deficient in the calcineurin isoform Aß (CnAß) subunit had reduced pancreatitis severity after infusion of TLCS or taurocholic acid into the pancreatic duct. In summary, we demonstrate that acinar cell calcineurin is activated in response to Ca(2+) generated by bile acid exposure, bile acid-induced pancreatic injury is dependent on calcineurin activation, and calcineurin inhibitors may provide an adjunctive therapy for biliary pancreatitis.


Assuntos
Células Acinares/citologia , Ácidos e Sais Biliares/química , Calcineurina/metabolismo , Cálcio/química , Citosol/metabolismo , Pâncreas/metabolismo , Pancreatite/metabolismo , Células Acinares/metabolismo , Animais , Cálcio/metabolismo , Quimotripsina/química , Ácido Egtázico/análogos & derivados , Ácido Egtázico/química , L-Lactato Desidrogenase/metabolismo , Camundongos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Isoformas de Proteínas , Tacrolimo/farmacologia , Ácido Taurolitocólico/análogos & derivados , Ácido Taurolitocólico/química , Fatores de Tempo
14.
Blood ; 118(26): 6871-80, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22042697

RESUMO

Protracted inhibition of osteoblast (OB) differentiation characterizes multiple myeloma (MM) bone disease and persists even when patients are in long-term remission. However, the underlying pathophysiology for this prolonged OB suppression is unknown. Therefore, we developed a mouse MM model in which the bone marrow stromal cells (BMSCs) remained unresponsive to OB differentiation signals after removal of MM cells. We found that BMSCs from both MM-bearing mice and MM patients had increased levels of the transcriptional repressor Gfi1 compared with controls and that Gfi1 was a novel transcriptional repressor of the critical OB transcription factor Runx2. Trichostatin-A blocked the effects of Gfi1, suggesting that it induces epigenetic changes in the Runx2 promoter. MM-BMSC cell-cell contact was not required for MM cells to increase Gfi1 and repress Runx2 levels in MC-4 before OBs or naive primary BMSCs, and Gfi1 induction was blocked by anti-TNF-α and anti-IL-7 antibodies. Importantly, BMSCs isolated from Gfi1(-/-) mice were significantly resistant to MM-induced OB suppression. Strikingly, siRNA knockdown of Gfi1 in BMSCs from MM patients significantly restored expression of Runx2 and OB differentiation markers. Thus, Gfi1 may have an important role in prolonged MM-induced OB suppression and provide a new therapeutic target for MM bone disease.


Assuntos
Neoplasias Ósseas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mieloma Múltiplo/metabolismo , Osteoblastos/metabolismo , Células Estromais/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3 , Animais , Western Blotting , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Expressão Gênica , Humanos , Interleucina-7/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Osteoblastos/patologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/patologia , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Cancer Biol Ther ; 10(9): 945-52, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20890132

RESUMO

The formation of proper mitotic spindles is required for appropriate chromosome segregation during cell division. Aberrant spindle formation often causes aneuploidy and results in tumorigenesis. However, the underlying mechanism of regulating spindle formation and chromosome separation remains to be further defined. Centrosomal Nlp (ninein-like protein) is a recently characterized BRCA1-regulated centrosomal protein and plays an important role in centrosome maturation and spindle formation. In this study, we show that Nlp can be phosphorylated by cell cycle protein kinase Cdc2/cyclin B1. The phosphorylation sites of Nlp are mapped at Ser185 and Ser589. Interestingly, the Cdc2/cyclin B1 phosphorylation site Ser185 of Nlp is required for its recognition by PLK1, which enable Nlp depart from centrosomes to allow the establishment of a mitotic scaffold at the onset of mitosis . PLK1 fails to dissociate the Nlp mutant lacking Ser185 from centrosome, suggesting that Cdc2/cyclin B1 might serve as a primary kinase of PLK1 in regulating Nlp subcellular localization. However, the phosphorylation at the site Ser589 by Cdc2/cyclin B1 plays an important role in Nlp protein stability probably due to its effect on protein degradation. Furthermore, we show that deregulated expression or subcellular localization of Nlp lead to multinuclei in cells, indicating that scheduled levels of Nlp and proper subcellular localization of Nlp are critical for successful completion of normal cell mitosis, These findings demonstrate that Cdc2/cyclin B1 is a key regulator in maintaining appropriate degradation and subcellular localization of Nlp, providing novel insights into understanding on the role of Cdc2/cyclin B1 in mitotic progression.


Assuntos
Proteína Quinase CDC2/metabolismo , Centrossomo/metabolismo , Ciclina B1/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Fuso Acromático/metabolismo , Western Blotting , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Mitose , Proteínas Nucleares/genética , Fosforilação , Poliploidia , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/genética , Quinase 1 Polo-Like
16.
J Biol Chem ; 285(51): 40230-9, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20864540

RESUMO

Cytokinesis is a fundamental cellular process, which ensures equal abscission and fosters diploid progenies. Aberrant cytokinesis may result in genomic instability and cell transformation. However, the underlying regulatory machinery of cytokinesis is largely undefined. Here, we demonstrate that Nlp (Ninein-like protein), a recently identified BRCA1-associated centrosomal protein that is required for centrosomes maturation at interphase and spindle formation in mitosis, also contributes to the accomplishment of cytokinesis. Through immunofluorescent analysis, Nlp is found to localize at midbody during cytokinesis. Depletion of endogenous Nlp triggers aborted division and subsequently leads to multinucleated phenotypes. Nlp can be recruited by Aurora B to the midbody apparatus via their physical association at the late stage of mitosis. Disruption of their interaction induces aborted cytokinesis. Importantly, Nlp is characterized as a novel substrate of Aurora B and can be phosphorylated by Aurora B. The specific phosphorylation sites are mapped at Ser-185, Ser-448, and Ser-585. The phosphorylation at Ser-448 and Ser-585 is likely required for Nlp association with Aurora B and localization at midbody. Meanwhile, the phosphorylation at Ser-185 is vital to Nlp protein stability. Disruptions of these phosphorylation sites abolish cytokinesis and lead to chromosomal instability. Collectively, these observations demonstrate that regulation of Nlp by Aurora B is critical for the completion of cytokinesis, providing novel insights into understanding the machinery of cell cycle progression.


Assuntos
Centrossomo/metabolismo , Citocinese/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Aurora Quinase B , Aurora Quinases , Instabilidade Cromossômica/fisiologia , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética
17.
Mol Cancer Ther ; 9(3): 558-68, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20145018

RESUMO

The highly conserved mismatch (MMR) repair system corrects postreplicative errors and modulates cellular responses to genotoxic agents. Here, we show that the MMR system strongly influences cellular sensitivity to curcumin. Compared with MMR-proficient cells, isogenically matched MMR-deficient cells displayed enhanced sensitivity to curcumin. Similarly, cells suppressed for MLH1 or MSH2 expression by RNA interference displayed increased curcumin sensitivity. Curcumin treatment generated comparable levels of reactive oxygen species and the mutagenic adduct 8-oxo-guanine in MMR-proficient and MMR-deficient cells; however, accumulation of gammaH2AX foci, a marker for DNA double-strand breaks (DSB), occurred only in MMR-positive cells in response to curcumin treatment. Additionally, MMR-positive cells showed activation of Chk1 and induction of G(2)-M cell cycle checkpoint following curcumin treatment and inhibition of Chk1 by UCN-01 abrogated Chk1 activation and heightened apoptosis in MMR-proficient cells. These results indicate that curcumin triggers the accumulation of DNA DSB and induction of a checkpoint response through a MMR-dependent mechanism. Conversely, in MMR-compromised cells, curcumin-induced DSB is significantly blunted, and as a result, cells fail to undergo cell cycle arrest, enter mitosis, and die through mitotic catastrophe. The results have potential therapeutic value, especially in the treatment of tumors with compromised MMR function.


Assuntos
Curcumina/farmacologia , Quebras de DNA de Cadeia Dupla , Reparo de Erro de Pareamento de DNA/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Genes cdc , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Quinase 1 do Ponto de Checagem , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Fase G2/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes cdc/efeitos dos fármacos , Células HCT116 , Humanos , Mitose/efeitos dos fármacos , Mitose/genética , Modelos Biológicos , Proteínas Quinases/metabolismo , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
18.
Exp Cell Res ; 315(18): 3163-75, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19766113

RESUMO

Agents inducing O(6)-methylguanine (O(6)MeG) in DNA such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) are cytotoxic and a deficiency in mismatch repair (MMR) results in lack of sensitivity to this genotoxin (termed alkylation tolerance). Here, we show that ING2, a member of the inhibitor of growth family, is required for cell death induced by MNNG. We further observe that MNNG treatment increases cellular protein levels of ING2 that is dependent on intact MMR function and that MNNG-induced ING2 localizes and associates with p73alpha in the nucleus. Suppression of ING2 by short hairpin RNA (shRNA) in MMR-proficient colorectal cancer cells decreased its sensitivity to MNNG and, in addition, abrogated MNNG-induced stabilization and acetylation of p73alpha. Interestingly, suppression of p73alpha had a greater impact on MNNG-induced cell death than ING2 leading us to conclude that ING2 regulates the cell death response, in part, through p73alpha. Inhibition of c-Abl by STI571 or suppression of c-Abl expression by shRNA blocked ING2 induction and p73alpha acetylation induced by this alkylator. Similarly, suppression of MMR (MLH1) by shRNA abrogated ING2 induction/p73alpha acetylation. Taken together, these results demonstrate that MLH1/c-Abl-dependent activation of ING2>p73alpha signaling regulates cell death triggered by MNNG and further suggests that dysregulation of this event may, in part, be responsible for alkylation tolerance observed in MMR compromised cells.


Assuntos
Alquilantes/toxicidade , Apoptose , Carcinógenos/toxicidade , Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Metilnitronitrosoguanidina/toxicidade , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Benzamidas , Proteínas de Ligação a DNA/antagonistas & inibidores , Células HeLa , Proteínas de Homeodomínio/agonistas , Humanos , Mesilato de Imatinib , Proteína 1 Homóloga a MutL , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/efeitos dos fármacos , Oligonucleotídeos/metabolismo , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-abl/efeitos dos fármacos , Pirimidinas/farmacologia , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transfecção , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/agonistas , Proteínas Supressoras de Tumor/antagonistas & inibidores
19.
J Biol Chem ; 284(34): 22970-7, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19509300

RESUMO

Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability.


Assuntos
Proteína BRCA1/metabolismo , Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Proteína BRCA1/genética , Western Blotting , Linhagem Celular Tumoral , Células HeLa , Humanos , Mitose/genética , Ligação Proteica , Estabilidade Proteica , RNA Interferente Pequeno
20.
Radiat Res ; 168(5): 552-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17973549

RESUMO

Ethyl pyruvate (EP), a simple aliphatic ester of pyruvic acid, has been shown to improve survival and ameliorate organ damage in animal models of sepsis, ischemia/reperfusion injury and hemorrhagic shock. Incubating IL3-dependent mouse hematopoietic progenitor cell 32Dcl3 cells before or after irradiation with 10 mM EP increased resistance to radiation as assessed by clonogenic radiation survival curves, decreased release of mitochondrial cytochrome C into the cytoplasm, and decreased apoptosis. EP inhibited radiation-induced caspase 3 activation and poly(ADP-ribose) polymerase (PARP) cleavage in 32Dcl3 cells in a concentration-dependent fashion. EP was given i.p. to C57BL/6NHsd mice irradiated with 9.75 Gy total-body irradiation (TBI). This treatment significantly improved survival. The survival benefit was apparent irrespective of whether treatment with EP was started 1 h before TBI and continued for 5 consecutive days after TBI or the compound was injected only 1 h before or only for 5 days after TBI. In all of the in vitro and in vivo experiments, ethyl lactate, an inactive analogue of EP, had no detectable radioprotective or mitigating effects. EP may be an effective radioprotector and mitigator of the hematopoietic syndrome induced by TBI.


Assuntos
Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos da radiação , Piruvatos/administração & dosagem , Protetores contra Radiação/administração & dosagem , Taxa de Sobrevida , Irradiação Corporal Total , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Feminino , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...