Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3972, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730241

RESUMO

The advancement of Long-Read Sequencing (LRS) techniques has significantly increased the length of sequencing to several kilobases, thereby facilitating the identification of alternative splicing events and isoform expressions. Recently, numerous computational tools for isoform detection using long-read sequencing data have been developed. Nevertheless, there remains a deficiency in comparative studies that systemically evaluate the performance of these tools, which are implemented with different algorithms, under various simulations that encompass potential influencing factors. In this study, we conducted a benchmark analysis of thirteen methods implemented in nine tools capable of identifying isoform structures from long-read RNA-seq data. We evaluated their performances using simulated data, which represented diverse sequencing platforms generated by an in-house simulator, RNA sequins (sequencing spike-ins) data, as well as experimental data. Our findings demonstrate IsoQuant as a highly effective tool for isoform detection with LRS, with Bambu and StringTie2 also exhibiting strong performance. These results offer valuable guidance for future research on alternative splicing analysis and the ongoing improvement of tools for isoform detection using LRS data.


Assuntos
Algoritmos , Processamento Alternativo , RNA Mensageiro , Análise de Sequência de RNA , Humanos , RNA Mensageiro/genética , RNA Mensageiro/análise , Análise de Sequência de RNA/métodos , Isoformas de RNA/genética , Software , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Isoformas de Proteínas/genética
2.
Mob DNA ; 15(1): 3, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303094

RESUMO

BACKGROUND: The CRISPR/Cas systems have emerged as powerful tools in genome engineering. Recent studies highlighting the crucial role of transposable elements (TEs) have stimulated research interest in manipulating these elements to understand their functions. However, designing single guide RNAs (sgRNAs) that are specific and efficient for TE manipulation is a significant challenge, given their sequence repetitiveness and high copy numbers. While various sgRNA design tools have been developed for gene editing, an optimized sgRNA designer for TE manipulation has yet to be established. RESULTS: We present CRISPR-TE, a web-based application featuring an accessible graphical user interface, available at https://www.crisprte.cn/ , and currently tailored to the human and mouse genomes. CRISPR-TE identifies all potential sgRNAs for TEs and provides a comprehensive solution for efficient TE targeting at both the single copy and subfamily levels. Our analysis shows that sgRNAs targeting TEs can more effectively target evolutionarily young TEs with conserved sequences at the subfamily level. CONCLUSIONS: CRISPR-TE offers a versatile framework for designing sgRNAs for TE targeting. CRISPR-TE is publicly accessible at https://www.crisprte.cn/ as an online web service and the source code of CRISPR-TE is available at https://github.com/WanluLiuLab/CRISPRTE/ .

3.
Nucleic Acids Res ; 50(D1): D1244-D1254, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34606616

RESUMO

T-cell receptors (TCRs) and B-cell receptors (BCRs) are critical in recognizing antigens and activating the adaptive immune response. Stochastic V(D)J recombination generates massive TCR/BCR repertoire diversity. Single-cell immune profiling with transcriptome analysis allows the high-throughput study of individual TCR/BCR clonotypes and functions under both normal and pathological settings. However, a comprehensive database linking these data is not yet readily available. Here, we present the human Antigen Receptor database (huARdb), a large-scale human single-cell immune profiling database that contains 444 794 high confidence T or B cells (hcT/B cells) with full-length TCR/BCR sequence and transcriptomes from 215 datasets. All datasets were processed in a uniform workflow, including sequence alignment, cell subtype prediction, unsupervised cell clustering, and clonotype definition. We also developed a multi-functional and user-friendly web interface that provides interactive visualization modules for biologists to analyze the transcriptome and TCR/BCR features at the single-cell level. HuARdb is freely available at https://huarc.net/database with functions for data querying, browsing, downloading, and depositing. In conclusion, huARdb is a comprehensive and multi-perspective atlas for human antigen receptors.


Assuntos
Bases de Dados Genéticas , Receptores de Antígenos de Linfócitos B/classificação , Receptores de Antígenos de Linfócitos T/classificação , Software , Linfócitos B , Humanos , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Análise de Célula Única , Transcriptoma/genética , Recombinação V(D)J/genética
4.
Biochem Biophys Res Commun ; 578: 21-27, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534741

RESUMO

Serine and arginine-rich splicing factor 3 (SRSF3), the smallest member of the Ser/Arg-rich (SR) RNA-binding protein family, regulates multiple aspects of post-transcriptional gene expression program. Although SRSF3 is essential for early embryo development, reprogramming, and pluripotency maintenance, the RNA targets and specificity of RNA recognition of SRSF3 are not well understood in human pluripotent stem cells. In this study, we used inducible TRIBE (targets of RNA binding sites by editing) to identify RNA targets and binding motifs of SRSF3 in human embryonic stem cells (hESCs). We identified 3888 confident binding sites of SRSF3, corresponding to 1222 gene targets. Our results showed that nearly half of the binding sites were distributed in exons, reflecting the alternative splicing function of SRSF3. Motif analysis demonstrated that two of the SRSF3 recognition sequences were the same as the motifs identified in mouse embryonic stem cells, suggesting the recognition sequences of SRSF3 may be conserved in mammals. Overall, our analyses revealed the RNA targets of SRSF3 and uncovered its RNA recognition specificity, providing a valuable resource for understanding the function of SRSF3 in human embryonic stem cells.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Edição de RNA , RNA Mensageiro/antagonistas & inibidores , Fatores de Processamento de Serina-Arginina/metabolismo , Animais , Linhagem Celular , Bases de Dados Genéticas , Células-Tronco Embrionárias Humanas/citologia , Humanos , Camundongos , RNA Mensageiro/genética , Fatores de Processamento de Serina-Arginina/genética
5.
Stem Cell Res Ther ; 11(1): 366, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831148

RESUMO

BACKGROUND: Significant progress has been made in cell replacement therapy for neural retinal diseases using retinal cells differentiated from human pluripotent stem cells. Low tumorigenicity and the ability to mature to form synaptic junctions make precursor cells a promising donor source. Here, we attempted to improve the yield of photoreceptor precursor cells in three-dimensional retinal organoids from human embryonic stem cells (hESCs). METHODS: A CRX-tdTomato-tagged hESC line was generated to track retinal precursors in 3D retinal organoids. COCO, a multifunctional antagonist of the Wnt, TGF-ß, and BMP pathways, was employed to 3D organoid differentiation schemes for enhanced photoreceptor precursor cells. Organoid fluorescence intensity measurement was used to monitor retinalization tendency with the number of precursors further checked by flow cytometry. Signature gene expression during organoid differentiation were assessed by qPCR and immunocytochemistry after COCO supplementation. RESULTS: CRX-positive cells can be spatiotemporally tracked by tdTomato without affecting retinalization during retinal organoid differentiation. Fluorescence intensity of organoids, which turned out highly consistent with flow cytometry measurement, allowed us to determine the differentiation efficiency of precursors during organoid culturing directly. Using COCO as an auxiliary supplement, rather than alone, can yield an increased number of photoreceptor precursors in the early stage of organoid differentiation. Over a longer time-frame, photoreceptor precursors enhanced their fate of cones and decreased fate of rods after treatment with COCO. CONCLUSIONS: Tracing with the CRX-reporter system showed that in retinal organoids derived from human pluripotent stem cells, COCO increased the differentiation efficiency of photoreceptor precursors and cones.


Assuntos
Células-Tronco Embrionárias Humanas , Diferenciação Celular , Cocos , Humanos , Organoides , Retina
6.
Front Cell Dev Biol ; 8: 128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211407

RESUMO

Although an increasing number of disease genes have been identified, the exact cellular mechanisms of retinitis pigmentosa (RP) remain largely unclear. Retinal organoids (ROs) derived from the induced pluripotent stem cells (iPSCs) of patients provide a potential but unvalidated platform for deciphering disease mechanisms and an advantageous tool for preclinical testing of new treatments. Notably, early-onset RP has been extensively recapitulated by patient-iPSC-derived ROs. However, it remains a challenge to model late-onset disease in a dish due to its chronicity, complexity, and instability. Here, we generated ROs from late-onset RP proband-derived iPSCs harboring a PDE6B mutation. Transcriptome analysis revealed a remarkably distinct gene expression profile in the patient ROs at differentiation day (D) 230. Changes in the expression genes regulating cGMP hydrolysis prompted the elevation of cGMP levels, which was verified by a cGMP enzyme-linked immunosorbent assay (ELISA) in patient ROs. Furthermore, significantly higher cGMP levels in patient ROs than in control ROs at D193 and D230 might lead to impaired formation of synaptic connections and the connecting cilium in photoreceptor cells. In this study, we established the first late-onset RP model with a consistent phenotype using an in vitro cell culture system and provided new insights into the PDE6B-related mechanism of RP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...