Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7997): 79-85, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172640

RESUMO

Grain boundaries (GBs), with their diversity in both structure and structural transitions, play an essential role in tailoring the properties of polycrystalline materials1-5. As a unique GB subset, {112} incoherent twin boundaries (ITBs) are ubiquitous in nanotwinned, face-centred cubic materials6-9. Although multiple ITB configurations and transitions have been reported7,10, their transition mechanisms and impacts on mechanical properties remain largely unexplored, especially in regard to covalent materials. Here we report atomic observations of six ITB configurations and structural transitions in diamond at room temperature, showing a dislocation-mediated mechanism different from metallic systems11,12. The dominant ITBs are asymmetric and less mobile, contributing strongly to continuous hardening in nanotwinned diamond13. The potential driving forces of ITB activities are discussed. Our findings shed new light on GB behaviour in diamond and covalent materials, pointing to a new strategy for development of high-performance, nanotwinned materials.

2.
Nat Mater ; 22(11): 1317-1323, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735525

RESUMO

Materials that possess the ability to self-heal cracks at room temperature, akin to living organisms, are highly sought after. However, achieving crack self-healing in inorganic materials, particularly with covalent bonds, presents a great challenge and often necessitates high temperatures and considerable atomic diffusion. Here we conducted a quantitative evaluation of the room-temperature self-healing behaviour of a fractured nanotwinned diamond composite, revealing that the self-healing properties of the composite stem from both the formation of nanoscale diamond osteoblasts comprising sp2- and sp3-hybridized carbon atoms at the fractured surfaces, and the atomic interaction transition from repulsion to attraction when the two fractured surfaces come into close proximity. The self-healing process resulted in a remarkable recovery of approximately 34% in tensile strength for the nanotwinned diamond composite. This discovery sheds light on the self-healing capability of nanostructured diamond, offering valuable insights for future research endeavours aimed at enhancing the toughness and durability of brittle ceramic materials.

3.
Nanomaterials (Basel) ; 12(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364509

RESUMO

The reinforcements represented by graphene nanoplatelets, graphite, and carbon nanotubes have demonstrated the great potential of carbon materials as reinforcements to enhance the mechanical properties of TiO2. However, it is difficult to successfully prepare TiO2-diamond composites because diamond is highly susceptible to oxidation or graphitization at relatively high sintering temperatures. In this work, the TiO2-diamond composites were successfully prepared using high-pressure sintering. The effect of diamond on the phase composition, microstructure, mechanical properties, and tribological properties was systemically investigated. Diamond can improve fracture toughness by the crack deflection mechanism. Furthermore, the addition of diamond can also significantly reduce the friction coefficient. The composite composed of 10 wt.% diamond exhibits optimum mechanical and tribological properties, with a hardness of 14.5 GPa, bending strength of 205.2 MPa, fracture toughness of 3.5 MPa∙m1/2, and a friction coefficient of 0.3. These results enlarge the family of titania-based composites and provide a feasible approach for the preparation of TiO2-diamond composites.

4.
Nat Commun ; 10(1): 5533, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797924

RESUMO

Diamond is the hardest natural material, but its practical strength is low and its elastic deformability extremely limited. While recent experiments have demonstrated that diamond nanoneedles can sustain exceptionally large elastic tensile strains with high tensile strengths, the size- and orientation-dependence of these properties remains unknown. Here we report maximum achievable tensile strain and strength of diamond nanoneedles with various diameters, oriented in <100>, <110> and <111> -directions, using in situ transmission electron microscopy. We show that reversible elastic deformation depends both on nanoneedle diameter and orientation. <100> -oriented nanoneedles with a diameter of 60 nm exhibit highest elastic tensile strain (13.4%) and tensile strength (125 GPa). These values are comparable with the theoretical elasticity and Griffith strength limits of diamond, respectively. Our experimental data, together with first principles simulations, indicate that maximum achievable elastic strain and strength are primarily determined by surface conditions of the nanoneedles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...