Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38140603

RESUMO

Soybean mosaic virus (SMV), a member of Potyvirus, is the most destructive and widespread viral disease in soybean production. Our earlier studies identified a soybean 40S ribosomal protein S8 (GmRPS8) using the 6K1 protein of SMV as the bait to screen a soybean cDNA library. The present study aims to identify the interactions between GmRPS8 and SMV and characterize the role of GmRPS8 in SMV infection in soybean. Expression analysis showed higher SMV-induced GmRPS8 expression levels in a susceptible soybean cultivar when compared with a resistant cultivar, suggesting that GmRPS8 was involved in the response to SMV in soybean. Subcellular localization showed that GmRPS8 was localized in the nucleus. Moreover, the yeast two-hybrid (Y2H) experiments showed that GmRPS8 only interacted with 6K1 among the eleven proteins encoded by SMV. The interaction between GmRPS8 and 6K1 was further verified by a bimolecular fluorescence complementation (BiFC) assay, and the interaction was localized in the nucleus. Furthermore, knockdown of GmRPS8 by a virus-induced gene silencing (VIGS) system retarded the growth and development of soybeans and inhibited the accumulation of SMV in soybeans. Together, these results showed that GmRPS8 interacts with 6K1 and contributes to soybean susceptibility to SMV. Our findings provide new insights for understanding the role of GmRPS8 in the SMV infection cycle, which could help reveal potyviral replication mechanisms.


Assuntos
Glycine max , Potyvirus , Glycine max/genética , Doenças das Plantas , Potyvirus/genética
2.
Sci Robot ; 8(84): eadh7852, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38019929

RESUMO

Octopuses can whip their soft arms with a characteristic "bend propagation" motion to capture prey with sensitive suckers. This relatively simple strategy provides models for robotic grasping, controllable with a small number of inputs, and a highly deformable arm with sensing capabilities. Here, we implemented an electronics-integrated soft octopus arm (E-SOAM) capable of reaching, sensing, grasping, and interacting in a large domain. On the basis of the biological bend propagation of octopuses, E-SOAM uses a bending-elongation propagation model to move, reach, and grasp in a simple but efficient way. E-SOAM's distal part plays the role of a gripper and can process bending, suction, and temperature sensory information under highly deformed working states by integrating a stretchable, liquid-metal-based electronic circuit that can withstand uniaxial stretching of 710% and biaxial stretching of 270% to autonomously perform tasks in a confined environment. By combining this sensorized distal part with a soft arm, the E-SOAM can perform a reaching-grasping-withdrawing motion across a range up to 1.5 times its original arm length, similar to the biological counterpart. Through a wearable finger glove that produces suction sensations, a human can use just one finger to remotely and interactively control the robot's in-plane and out-of-plane reaching and grasping both in air and underwater. E-SOAM's results not only contribute to our understanding of the function of the motion of an octopus arm but also provide design insights into creating stretchable electronics-integrated bioinspired autonomous systems that can interact with humans and their environments.

3.
Int J Biol Macromol ; 248: 125894, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37479200

RESUMO

Ionic liquids (ILs) have been widely used as chemical modifiers to modify the carriers and thus improve the efficiency, activity and stability of the enzymes. However, as thousands of ILs have been found up to date, it's a huge work for screening and designing suitable ILs for immobilization of enzymes. Moreover, the mechanism of improving enzymes catalytic performance is still remain ambiguous. Thus, this study investigated the impact of ILs with different chain lengths on the enzymatic properties of Candida antarctica lipase B (CALB). Molecular dynamics simulations were employed to examine the interaction between ILs modified CNTs and CALB, as well as their effects on CALB's structure. The results revealed that ILs with different chain lengths significantly influenced the absorption orientation of CALB. Tunnel analysis identified a key role for Leu278 in regulating the open or closed state of Tunnel 2 during CALB's catalytic cycle. The weak interaction analysis demonstrated that ILs with suitable chain lengths provided spatial freedom and formed strong interactions with CNTs and ILs (vdW and hbond). This led to a conformational flip of Leu278, stabilizing the open state of Tunnel 2 and improving the activity and stability of immobilized CALB. This study provides novel insights into the design of new green modifiers to modulate carrier performance and obtain immobilized enzymes with better performance, and establishes a theoretical basis for the design and selection of modifiers for ILs in future work.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Leucina , Lipase/química , Enzimas Imobilizadas/química , Proteínas Fúngicas/química
4.
Front Immunol ; 14: 1142346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063849

RESUMO

Urolithiasis is a common and frequent disease in urology. Percutaneous nephrolithotomy (PCNL) is preferred for the treatment of upper urinary tract stones and complicated renal stones >2 cm in diameter, but it has a higher rate of postoperative complications, especially infection, compared with other minimally invasive treatments for urinary stones. Complications associated with infection after percutaneous nephrolithotomy include transient fever, systemic inflammatory response syndrome (SIRS), and sepsis, which is considered one of the most common causes of perioperative death after percutaneous nephrolithotomy. In contrast, SIRS serves as a sentinel for sepsis, so early intervention of SIRS by biomarker identification can reduce the incidence of postoperative sepsis, which in turn reduces the length of stay and hospital costs for patients. In this paper, we summarize traditional inflammatory indicators, novel inflammatory indicators, composite inflammatory indicators and other biomarkers for early identification of systemic inflammatory response syndrome after percutaneous nephrolithotomy.


Assuntos
Nefrolitotomia Percutânea , Nefrostomia Percutânea , Sepse , Humanos , Nefrolitotomia Percutânea/efeitos adversos , Nefrostomia Percutânea/efeitos adversos , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Sepse/diagnóstico , Sepse/etiologia , Biomarcadores
5.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982379

RESUMO

Host proteins are essential during virus infection, and viral factors must target numerous host factors to complete their infectious cycle. The mature 6K1 protein of potyviruses is required for viral replication in plants. However, the interaction between 6K1 and host factors is poorly understood. The present study aims to identify the host interacting proteins of 6K1. Here, the 6K1 of Soybean mosaic virus (SMV) was used as the bait to screen a soybean cDNA library to gain insights about the interaction between 6K1 and host proteins. One hundred and twenty-seven 6K1 interactors were preliminarily identified, and they were classified into six groups, including defense-related, transport-related, metabolism-related, DNA binding, unknown, and membrane-related proteins. Then, thirty-nine proteins were cloned and merged into a prey vector to verify the interaction with 6K1, and thirty-three of these proteins were confirmed to interact with 6K1 by yeast two-hybrid (Y2H) assay. Of the thirty-three proteins, soybean pathogenesis-related protein 4 (GmPR4) and Bax inhibitor 1 (GmBI1) were chosen for further study. Their interactions with 6K1 were also confirmed by bimolecular fluorescence complementation (BiFC) assay. Subcellular localization showed that GmPR4 was localized to the cytoplasm and endoplasmic reticulum (ER), and GmBI1 was located in the ER. Moreover, both GmPR4 and GmBI1 were induced by SMV infection, ethylene and ER stress. The transient overexpression of GmPR4 and GmBI1 reduced SMV accumulation in tobacco, suggesting their involvement in the resistance to SMV. These results would contribute to exploring the mode of action of 6K1 in viral replication and improve our knowledge of the role of PR4 and BI1 in SMV response.


Assuntos
Potyvirus , Proteínas Virais , Proteínas Virais/metabolismo , Potyvirus/genética , Proteínas de Soja/metabolismo , Glycine max/metabolismo , Doenças das Plantas/genética
6.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(1): 148-156, 2023 Jan 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36935188

RESUMO

Prostate cancer is currently one of the most common malignancies that endanger the lives and health of elderly men. In recent years, immunotherapy, which exploits the activation of anti-cancer host immune cells to accomplish tumor-killing effects, has emerged as a new study avenue in the treatment of prostate cancer. As an important component of immunotherapy, cancer vaccines have a unique position in the precision treatment of malignant tumors. Monocyte cell vaccines, dendritic cell vaccines, viral vaccines, peptide vaccines, and DNA/mRNA vaccines are the most often used prostate cancer vaccines. Among them, Sipuleucel-T, as a monocyte cell-based cancer vaccine, is the only FDA-approved therapeutic vaccine for prostate cancer, and has a unique position and role in advancing the development of immunotherapy for prostate cancer. However, due to its own limitations, Sipuleucel-T has not been widely adopted. Meanwhile, owing to the complexity of immunotherapy and the specificity of prostate cancer, the remaining prostate cancer vaccines have not shown good clinical benefit in large randomized phase II and phase III trials, and further in-depth studies are still needed.


Assuntos
Vacinas Anticâncer , Neoplasias da Próstata , Idoso , Humanos , Masculino , Vacinas Anticâncer/uso terapêutico , Imunoterapia , Próstata/patologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Extratos de Tecidos/uso terapêutico
7.
Ecotoxicol Environ Saf ; 255: 114791, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934547

RESUMO

This paper explored the possibility of heterotrophic denitrification driven by composite solid carbon sources in low carbon/nitrogen ratio marine recirculating aquaculture wastewater. In this study, two agricultural wastes, reed straw (RS), corn cob (CC) and two artificial polymers, polycaprolactone (PCL), poly3-hydroxybutyrate-hydroxypropionate (PHBV) were mixed in a 1:1 ratio to compare the carbon release characteristics of the four composite carbon sources (RS+PCL, RS+PHBV, CC+PCL, and CC+PHBV) and their effects on improving the mariculture wastewater for denitrification. Dissolved organic carbon (DOC) after carbon source release (4.96-1.07 mg/g), total organic carbon/chemical oxygen demand (1.9-0.79) and short-chain fatty acids (SCFAs) (4.23-0.21 mg/g) showed that all the four composite solid carbon sources had excellent organic carbon release ability, and the CC+PCL group had the highest release of DOC and SCFAs. Energy-dispersive X-ray spectroscopy, scanning electron microscopy, and Fourier-transform infrared spectroscopy were used to observe the changes in the surface characteristics of the composite carbon source before and after application. And results showed that the stable internal structure enabled CC+PCL group to have continuous carbon release performance and achieved the maximum denitrification efficiency (93.32 %). The NRE results were supported by the abundance of the Proteobacteria microbial community at the phylum level and Marinobacter at the genus level. Quantitative real-time PCR (q-PCR) indicated CC-containing composite carbon source groups have good nitrate reduction ability, while PCL-containing composite carbon source groups have better nitrite reduction level. In conclusion, the carbon source for agricultural wastes and artificial polymers can be used as an economic and effective solid carbon source for denitrification and treatment of marine recirculating aquaculture wastewater.


Assuntos
Polímeros , Águas Residuárias , Desnitrificação , Carbono/química , Reatores Biológicos/microbiologia , Poliésteres/química , Nitratos/análise , Nitrogênio/análise , Matéria Orgânica Dissolvida
10.
J Integr Plant Biol ; 65(3): 838-853, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36330964

RESUMO

Soybean mosaic virus (SMV) is one of the most devastating viral pathogens of soybean (Glycine max (L.) Merr). In total, 22 Chinese SMV strains (SC1-SC22) have been classified based on the responses of 10 soybean cultivars to these pathogens. However, although several SMV-resistance loci in soybean have been identified, no gene conferring SMV resistance in the resistant soybean cultivar (cv.) Kefeng No.1 has been cloned and verified. Here, using F2 -derived F3 (F2:3 ) and recombinant inbred line (RIL) populations from a cross between Kefeng No.1 and susceptible soybean cv. Nannong 1138-2, we localized the gene in Kefeng No.1 that mediated resistance to SMV-SC3 strain to a 90-kb interval on chromosome 2. To study the functions of candidate genes in this interval, we performed Bean pod mottle virus (BPMV)-induced gene silencing (VIGS). We identified a recombinant gene (which we named RSC3 K) harboring an internal deletion of a genomic DNA fragment partially flanking the LOC100526921 and LOC100812666 reference genes as the SMV-SC3 resistance gene. By shuffling genes between infectious SMV DNA clones based on the avirulent isolate SC3 and virulent isolate 1129, we determined that the viral protein P3 is the avirulence determinant mediating SMV-SC3 resistance on Kefeng No.1. P3 interacts with RNase proteins encoded by RSC3 K, LOC100526921, and LOC100812666. The recombinant RSC3 K conveys much higher anti-SMV activity than LOC100526921 and LOC100812666, although those two genes also encode proteins that inhibit SMV accumulation, as revealed by gene silencing in a susceptible cultivar and by overexpression in Nicotiana benthamiana. These findings demonstrate that RSC3 K mediates the resistance of Kefeng No.1 to SMV-SC3 and that SMV resistance of soybean is determined by the antiviral activity of RNase proteins.


Assuntos
Glycine max , Potyvirus , Glycine max/genética , Proteínas Virais , Potyvirus/genética , Ribonucleases , Doenças das Plantas/genética
11.
Theor Appl Genet ; 135(12): 4217-4232, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36114309

RESUMO

KEY MESSAGE: A putative candidate gene conferring resistance to SMV strain SC1 was identified on chromosome 2, and the linked marker was validated in soybean cultivars Soybean mosaic, caused by the soybean mosaic virus, is the most common disease in soybean and a significant impediment to soybean production in the Huanghuai and Yangtze River regions of China. Kefeng No.1, a soybean cultivar, showed high resistance to soybean mosaic virus strain (SC1) collected from Huanghuai and Yangtze River regions. Genetic analysis based on the Mendelian genic population derived from the cross Kefeng No.1 × Nannong 1138-2 revealed that Kefeng No.1 possesses a single dominant gene. Furthermore, genetic fine-mapping using an F2 population containing 281 individuals delimited resistant gene to a genomic region of 186 kb flanked by SSR markers BS020610 and BS020620 on chromosome 2. Within this region, there were 14 genes based on the Williams 82 reference genome. According to sequence analysis, six of the 14 genes have amino acid differences, and one of these genes is the Rsv4 allele designated as Rsc1-DR. The functional analysis of candidate genes using the bean pod mottle virus (BPMV)-induced gene silencing (VIGS) system revealed that Rsc1-DR was accountable for Kefeng No.1's resistance to SMV-SC1. Based on the genome sequence of Rsc1-DR, an Insertion/Deletion (InDel) molecular marker, JT0212, was developed and genotyped using 100 soybean cultivars, and the coincidence rate was 89%. The study enriched our understanding of the SMV resistance mechanism. The marker developed in this study could be directly used by the soybean breeders to select the genotypes with favorable alleles for making crosses, and also it will facilitate marker-assisted selection of SMV resistance in soybean breeding.


Assuntos
Resistência à Doença , Glycine max , Potyvirus , Humanos , Resistência à Doença/genética , Genes de Plantas , Melhoramento Vegetal , Doenças das Plantas/genética , Potyvirus/genética , Glycine max/genética
12.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805901

RESUMO

E3-ubiquitin ligases are known to confer abiotic stress responses in plants. In the present study, GmPUB21, a novel U-box E3-ubiquitin ligase-encoding gene, was isolated from soybean and functionally characterized. The expression of GmPUB21, which possesses E3-ubiquitin ligase activity, was found to be significantly up-regulated by drought, salinity, and ABA treatments. The fusion protein GmPUB21-GFP was localized in the cytoplasm, nucleus, and plasma membrane. Transgenic lines of the Nicotiana benthamiana over-expressing GmPUB21 showed more sensitive to osmotic, salinity stress and ABA in seed germination and inhibited mannitol/NaCl-mediated stomatal closure. Moreover, higher reactive oxygen species accumulation was observed in GmPUB21 overexpressing plants after drought and salinity treatment than in wild-type (WT) plants. Contrarily, silencing of GmPUB21 in soybean plants significantly enhanced the tolerance to drought and salinity stresses. Collectively, our results revealed that GmPUB21 negatively regulates the drought and salinity tolerance by increasing the stomatal density and aperture via the ABA signaling pathway. These findings improved our understanding of the role of GmPUB21 under drought and salinity stresses in soybean.


Assuntos
Arabidopsis , Secas , Ácido Abscísico/farmacologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Salinidade , Estresse Salino , Glycine max/genética , Glycine max/metabolismo , Estresse Fisiológico/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo
13.
Transbound Emerg Dis ; 69(5): e2967-e2977, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35768955

RESUMO

Providencia rettgeri has been recognized as a zoonotic pathogen of humans and aquaculture animals and has become a global public health concern. However, scarce information is available on the characterization of pathogenic P. rettgeri from kuruma shrimp Marsupenaeus japonicus. In the present study, a P. rettgeri isolate (KM4) was confirmed as a causative agent of red leg disease in cultured M. japonicus, which showed a median lethal dose (LD50 ) value of 5.01 × 105 CFU·ml-1 and had multiple resistances to aminoglycosides, sulfonamides, and tetracycline antimicrobials used in aquaculture. In addition, the whole genome of isolate KM4 was sequenced and found to consist of a single circular chromosome of 4,378,712 bp and a circular plasmid of 171,394 bp. The genome sequence analysis further revealed the presence of potential virulence and antibiotic resistance genes in isolate KM4, which probably rendered this isolate particularly virulent. To our knowledge, this is the first study to characterize P. rettgeri pathogens from kuruma shrimp infected with red leg disease. The findings of this study can provide novel insights into the presence and distribution of pathogenicity-associated genes in shrimp-pathogenic P. rettgeri.


Assuntos
Penaeidae , Aminoglicosídeos , Animais , Genômica , Humanos , Providencia , Sulfonamidas , Tetraciclinas
14.
BMC Genomics ; 23(1): 171, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236286

RESUMO

BACKGROUND: Soybean mosaic virus (SMV) is one of the most devastating pathogens of soybean. MicroRNAs (miRNAs) are a class of non-coding RNAs (21-24 nucleotides) which are endogenously produced by the plant host as part of a general gene expression regulatory mechanisms, but also play roles in regulating plant defense against pathogens. However, miRNA-mediated plant response to SMV in soybean is not as well documented. RESULT: In this study, we analyzed 18 miRNA libraries, including three biological replicates from two soybean lines (Resistant and susceptible lines to SMV strain SC3 selected from the near-isogenic lines of Qihuang No. 1 × Nannong1138-2) after virus infection at three different time intervals (0 dpi, 7 dpi and 14 dpi). A total of 1,092 miRNAs, including 608 known miRNAs and 484 novel miRNAs were detected. Differential expression analyses identified the miRNAs profile changes during soybean-SMV interaction. Then, miRNAs potential target genes were predicted via data mining, and functional annotation was done by Gene Ontology (GO) analysis. The expression patterns of several miRNAs were validated by quantitative real-time PCR. We also validated the miRNA-target gene interaction by agrobacterium-mediated transient expression in Nicotiana benthamiana. CONCLUSION: We have identified a large number of miRNAs and their target genes and also functional annotations. We found that multiple miRNAs were differentially expressed in the two lines and targeted a series of NBS-LRR resistance genes. It is worth mentioning that many of these genes exist in the previous fine-mapping interval of the resistance gene locus. Our study provides additional information on soybean miRNAs and an insight into the role of miRNAs during SMV-infection in soybean.


Assuntos
MicroRNAs , Potyvirus , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Plantas/genética , Potyvirus/genética , Glycine max/genética , Glycine max/metabolismo
15.
Mol Plant ; 14(11): 1881-1900, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34303025

RESUMO

Soybean mosaic virus (SMV) causes severe yield losses and seed quality reduction in soybean (Glycine max) production worldwide. Rsc4 from cultivar Dabaima is a dominant genetic locus for SMV resistance, and its mapping interval contains three nucleotide-binding domain leucine-rich repeat-containing (NLR) candidates (Rsc4-1, Rsc4-2, and Rsc4-3). The NLR-type resistant proteins were considered as important intracellular pathogen sensors in the previous studies. In this study, based on transient expression assay in Nicotiana benthamiana leaves, we found that the longest transcript of Rsc4-3 is sufficient to confer resistance to SMV, and CRISPR/Cas9-mediated editing of Rsc4-3 in resistant cultivar Dabaima compromised the resistance. Interestingly, Rsc4-3 encodes a cell-wall-localized NLR-type resistant protein. We found that the internal polypeptide region responsible for apoplastic targeting of Rsc4-3 and the putative palmitoylation sites on the N terminus are essential for the resistance. Furthermore, we showed that viral-encoded cylindrical inclusion (CI) protein partially localizes to the cell wall and can interact with Rsc4-3. Virus-driven or transient expression of CI protein of avirulent SMV strains is enough to induce resistance response in the presence of Rsc4-3, suggesting that CI is the avirulent gene for Rsc4-3-mediated resistance. Taken together, our work identified a unique NLR that recognizes plant virus in the apoplast, and provided a simple and effective method for identifying resistant genes against SMV infection.


Assuntos
Parede Celular/imunologia , Glycine max/imunologia , Proteínas de Repetições Ricas em Leucina/imunologia , Imunidade Vegetal , Proteínas de Plantas/imunologia , Potyvirus/imunologia , Proteínas Virais/imunologia , Resistência à Doença , Corpos de Inclusão/imunologia , Potyvirus/genética , Glycine max/virologia , Nicotiana
16.
Phytomedicine ; 85: 153542, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33799225

RESUMO

BACKGROUND: Paridis Rhizoma (PR) is a famous traditional herbal medicine. Apart from two officially recorded species, viz. Paris polyphylla Smith var. yunnanensis (Franch.) Hand. - Mazz. (PPY) and P. polyphylla Smith var. chinensis (Franch.) Hara (PPC), there are still many other species used as folk medicine. It is necessary to understand the metabolic differences among Paris species. PURPOSE: To establish a strategy that can discover species-specific steroidal saponin markers to distinguish closely-related Paris herbs for quality and safety control. METHODS: A new strategy of molecular-networking-guided discovery of species-specific markers was proposed. Firstly, the ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was applied to obtain the MS and MS/MS data of all samples. Then, molecular networking (MN) was created using MS/MS data to prescreen the steroidal saponins for subsequent analysis. Next, the principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA) models were established to discover potential markers. Finally, the verification, identification and distribution of chemical markers were performed. RESULTS: A total of 126 steroidal saponins were screened out from five species using MN. Five species were classified successfully by OPLS-DA model, and 18 species-specific markers were discovered combining the variable importance in the projection (VIP) value, P value (one-way ANOVA) and their relative abundance. These markers could predict the species of Paris herbs correctly. CONCLUSION: These results revealed that this new strategy could be an efficient way for chemical discrimination of medicinal herbs with close genetic relationship.


Assuntos
Melanthiaceae/classificação , Plantas Medicinais/classificação , Saponinas/análise , Cromatografia Líquida de Alta Pressão , Análise Discriminante , Análise dos Mínimos Quadrados , Melanthiaceae/química , Plantas Medicinais/química , Rizoma/química , Saponinas/química , Especificidade da Espécie , Espectrometria de Massas em Tandem
17.
Virus Res ; 281: 197870, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31962064

RESUMO

Soybean mosaic virus (SMV)-disease is one of the most serious and widespread diseases in soybean (Glycine max). In the present study, a DnaJ protein in soybean designated GmCPIP (SMV coat protein-interacting protein) was screened by the QIS-Seq (quantitative interactor screening with next-generation sequencing) method, and the interaction between SMV CP and GmCPIP was confirmed by the yeast two-hybrid (Y2H) system and bimolecular fluorescence complementation (BiFC) assay. Subcellular localization analysis indicated that both proteins are localized in the cytoplasm, cytomembrane and nucleus. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that infection with SMV-SC4 temporarily increased the transcription of GmCPIP. Virus-induced gene silencing (VIGS) down-regulated the GmCPIP gene by 82%, and the accumulation of SMV was decreased by 88.6% in GmCPIP-silenced plants inoculated with SMV-SC4. The interaction of GmCPIP with SMV CP seems to contribute to SMV infection in soybean.


Assuntos
Proteínas do Capsídeo/metabolismo , Glycine max , Proteínas de Choque Térmico HSP40/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Potyvirus/fisiologia , Viroses/virologia , Interações entre Hospedeiro e Microrganismos , Ligação Proteica , Glycine max/metabolismo , Glycine max/virologia
18.
AMB Express ; 9(1): 116, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31342207

RESUMO

Infectious clone vectors used widely in genetic research. While constructing soybean mosaic virus (SMV) clone vectors, we found that transformed Agrobacterium grew significantly different depending on the viral strains used. In particular, the clone vectors constructed with SMV SC15 significantly suppressed the growth of Agrobacterium. Recombinant and truncated virus vector experiments showed that the polymorphism of a P1 protein coding sequence of SC15 leads to the growth inhibition of Agrobacterium. But the lack of other protein encoding sequences, except for the sequence encoding coat protein, should reduce the ability of SC15 to suppress Agrobacterium growth. A vector (pCB301-attL-SC15P) compatible with the Gateway cloning system was constructed using this Agrobacterium inhibitory sequence. The results from the LR recombination reaction with pCB301-attL-SC15P and Agrobacterium transformation showed the valuable application potential of the Agrobacterium inhibitory sequence to serve as a negative screening factor for effective recombinant clone screening in Agrobacterium.

19.
Pol J Microbiol ; 68(2): 247-254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31250595

RESUMO

Gastric microbiota provides a biological barrier against the invasion of foreign pathogens from the oral cavity, playing a vital role in maintaining gastrointestinal health. Klebsiella spp. of oral origin causes various infections not only in gastrointestinal tract but also in other organs, with Klebsiella pneumoniae serotype K1 resulting in a liver abscess (KLA) through oral inoculation in mice. However, the relationship between gastric microbiota and the extra-gastrointestinal KLA infection is not clear. In our study, a 454 pyrosequencing analysis of the bacterial 16S rRNA gene shows that the composition of gastric mucosal microbiota in mice with or without KLA infection varies greatly after oral inoculation with K. pneumoniae serotype K1 isolate. Interestingly, only several bacteria taxa show a significant change in gastric mucosal microbiota of KLA mice, including the decreased abundance of Bacteroides, Alisptipes and increased abundance of Streptococcus. It is worth noting that the abundance of Klebsiella exhibits an obvious increase in KLA mice, which might be closely related to KLA infection. At the same time, the endogenous antibiotics, defensins, involved in the regulation of the bacterial microbiota also show an increase in stomach and intestine. All these findings indicate that liver abscess caused by K. pneumoniae oral inoculation has a close relationship with gastric microbiota, which might provide important information for future clinical treatment.Gastric microbiota provides a biological barrier against the invasion of foreign pathogens from the oral cavity, playing a vital role in maintaining gastrointestinal health. Klebsiella spp. of oral origin causes various infections not only in gastrointestinal tract but also in other organs, with Klebsiella pneumoniae serotype K1 resulting in a liver abscess (KLA) through oral inoculation in mice. However, the relationship between gastric microbiota and the extra-gastrointestinal KLA infection is not clear. In our study, a 454 pyrosequencing analysis of the bacterial 16S rRNA gene shows that the composition of gastric mucosal microbiota in mice with or without KLA infection varies greatly after oral inoculation with K. pneumoniae serotype K1 isolate. Interestingly, only several bacteria taxa show a significant change in gastric mucosal microbiota of KLA mice, including the decreased abundance of Bacteroides, Alisptipes and increased abundance of Streptococcus. It is worth noting that the abundance of Klebsiella exhibits an obvious increase in KLA mice, which might be closely related to KLA infection. At the same time, the endogenous antibiotics, defensins, involved in the regulation of the bacterial microbiota also show an increase in stomach and intestine. All these findings indicate that liver abscess caused by K. pneumoniae oral inoculation has a close relationship with gastric microbiota, which might provide important information for future clinical treatment.


Assuntos
Biota , Disbiose/complicações , Mucosa Gástrica/microbiologia , Infecções por Klebsiella/complicações , Abscesso Hepático/complicações , Animais , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Modelos Animais de Doenças , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/patologia , Abscesso Hepático/microbiologia , Abscesso Hepático/patologia , Camundongos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Curr Microbiol ; 75(7): 952-959, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29637226

RESUMO

Intestinal microbiota plays a crucial role in preventing the colonization and invasion by pathogens, and disruption of microbiota may cause opportunistic infections and diseases. Pathogens often have strategies to escape from the colonization resistance mediated by microbiota, but whether they also modulate the microbiota composition is still a topic of investigation. In the present study, we addressed this question using an opportunistic pathogen, Klebsiella pneumoniae serotype K1, which is known to cause pyogenic liver abscess (KLA) in about 30% of mice. We examined the effect of K. pneumoniae infection on cecal microbiota composition by performing high-throughput 454 pyrosequencing of the hypervariable V3-V4 regions of bacterial 16S rRNA gene. Our data revealed that K. pneumoniae inoculation substantially changed the cecal microbiota composition when analyzed at the phylum, order, and family levels. Most strikingly, the KLA-infected mice had significantly increased abundance of Bacteroidales and Enterobacteriales and decreased abundance of Lactobacillales and Eggerthellales. Furthermore, by comparing the infected mice with or without KLA disease symptoms, we identified specific microbiota changes associated with the KLA disease induction. Especially, the KLA group had dramatically decreased sequence identical to Lactobacillus compared with non-KLA mice. These findings suggest that the pathogenic process of KLA infection may involve alteration of microbiota compositions, particularly reduction in Lactobacillus.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/fisiologia , Abscesso Hepático Piogênico/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , Trato Gastrointestinal/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...