Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(1): 530-542, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216502

RESUMO

Changes in soil microbial activity and ecological function can be used to assess the level of soil fertility and the stability of ecosystems. To assess the fertility and safety of organic fertilizer of kitchen waste (OFK), soils containing 0% (CK), 1%, 3%, and 5% OFK were cultured, and the physical, chemical, and microbial properties of the soils were measured dynamically with routine agrochemical analysis measures and amplicon sequencing. The results showed that compared with those in CK, the contents of organic matter, available phosphorus, available potassium, NH4+-N, and NO3--N in soils with OFK increased by 23.80%-35.13%, 13.29%-29.72%, 16.91%-39.37%, 164.7%-340.2%, and 28.56%-32.71%, respectively. The activities of hydrolases related to the cycle of carbon, nitrogen, and phosphorus (α-glucosidase, leucine aminopeptidase, acid phosphatase, etc.) were also significantly higher than those of the CK treatment. OFK stimulated the growth of soil microorganisms and increased the carbon content of the microbial biomass. The amplicon sequencing analysis found that the microbial community structures of different treatments were significantly different at both the class and genus levels. In addition, it was found that the abundance of beneficial microbes in the soils with OFK increased, whereas pathogenic microbes decreased. RDA results confirmed that soil properties (including soil pH, organic matter, available nutrients, and microbial biomass) had a significant impact on microbial community structure. The results of investing bacterial community based on PICRUSt and FAPROTAX revealed that the function of the soil bacterial community was similar in the four treatments, but OFK supply significantly improved the microbial carbon utilization and metabolic ability. Moreover, by using the FUNGuild software, we found that the application of OFK increased the proportion of saprotroph-symbiotroph and symbiotroph and stimulated the growth of ectomycorrhizal fungi-undefined saprophytic fungi but inhibited plant and animal pathogenic fungi in soil. These results implied that OFK could promote the establishment of symbiotic relationships and inhibit the growth of pathogenic fungi. In summary, OFK could improve soil fertility and hydrolase activity, stimulate the growth of beneficial microorganisms, and defend against pathogens, indicating a promising use as safe and efficient organic fertilizer.


Assuntos
Microbiota , Solo , Animais , Solo/química , Fertilizantes/análise , Microbiologia do Solo , Carbono/metabolismo , Fungos/metabolismo , Nitrogênio/análise , Fósforo/análise
2.
Mol Cell ; 83(14): 2595-2611.e11, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37421941

RESUMO

RNA-binding proteins (RBPs) control RNA metabolism to orchestrate gene expression and, when dysfunctional, underlie human diseases. Proteome-wide discovery efforts predict thousands of RBP candidates, many of which lack canonical RNA-binding domains (RBDs). Here, we present a hybrid ensemble RBP classifier (HydRA), which leverages information from both intermolecular protein interactions and internal protein sequence patterns to predict RNA-binding capacity with unparalleled specificity and sensitivity using support vector machines (SVMs), convolutional neural networks (CNNs), and Transformer-based protein language models. Occlusion mapping by HydRA robustly detects known RBDs and predicts hundreds of uncharacterized RNA-binding associated domains. Enhanced CLIP (eCLIP) for HydRA-predicted RBP candidates reveals transcriptome-wide RNA targets and confirms RNA-binding activity for HydRA-predicted RNA-binding associated domains. HydRA accelerates construction of a comprehensive RBP catalog and expands the diversity of RNA-binding associated domains.


Assuntos
Aprendizado Profundo , Hydra , Animais , Humanos , RNA/metabolismo , Ligação Proteica , Sítios de Ligação/genética , Hydra/genética , Hydra/metabolismo
3.
bioRxiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333282

RESUMO

Messenger RNAs (mRNAs) interact with RNA-binding proteins (RBPs) in diverse ribonucleoprotein complexes (RNPs) during distinct life-cycle stages for their processing and maturation. While substantial attention has focused on understanding RNA regulation by assigning proteins, particularly RBPs, to specific RNA substrates, there has been considerably less exploration leveraging protein-protein interaction (PPI) methodologies to identify and study the role of proteins in mRNA life-cycle stages. To address this gap, we generated an RNA-aware RBP-centric PPI map across the mRNA life-cycle by immunopurification (IP-MS) of ~100 endogenous RBPs across the life-cycle in the presence or absence of RNase, augmented by size exclusion chromatography (SEC-MS). Aside from confirming 8,700 known and discovering 20,359 novel interactions between 1125 proteins, we determined that 73% of our IP interactions are regulated by the presence of RNA. Our PPI data enables us to link proteins to life-cycle stage functions, highlighting that nearly half of the proteins participate in at least two distinct stages. We show that one of the most highly interconnected proteins, ERH, engages in multiple RNA processes, including via interactions with nuclear speckles and the mRNA export machinery. We also demonstrate that the spliceosomal protein SNRNP200 participates in distinct stress granule-associated RNPs and occupies different RNA target regions in the cytoplasm during stress. Our comprehensive RBP-focused PPI network is a novel resource for identifying multi-stage RBPs and exploring RBP complexes in RNA maturation.

4.
PLoS Biol ; 21(1): e3001983, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716323

RESUMO

During a microbial infection, responding CD8+ T cells give rise to effector cells that provide acute host defense and memory cells that provide sustained protection. An alternative outcome is exhaustion, a state of T cell dysfunction that occurs in the context of chronic infections and cancer. Although it is evident that exhausted CD8+ T (TEX) cells are phenotypically and molecularly distinct from effector and memory CD8+ T cells, the factors regulating the earliest events in the differentiation process of TEX cells remain incompletely understood. Here, we performed single-cell RNA-sequencing and single-cell ATAC-sequencing of CD8+ T cells responding to LCMV-Armstrong (LCMV-Arm) or LCMV-Clone 13 (LCMV-Cl13), which result in acute or chronic infections, respectively. Compared to CD8+ T cells that had undergone their first division in response to LCMV-Arm (Div1ARM) cells, CD8+ T cells that had undergone their first division in response to LCMV-Cl13 (Div1CL13) expressed higher levels of genes encoding transcription factors previously associated with exhaustion, along with higher levels of Ezh2, the catalytic component of the Polycomb Repressive Complex 2 (PRC2) complex, which mediates epigenetic silencing. Modulation of Ezh2 resulted in altered expression of exhaustion-associated molecules by CD8+ T cells responding to LCMV-Cl13, though the specific cellular and infectious contexts, rather than simply the level of Ezh2 expression, likely determine the eventual outcome. Taken together, these findings suggest that the differentiation paths of CD8+ T cells responding to acute versus chronic infections may diverge earlier than previously appreciated.


Assuntos
Coriomeningite Linfocítica , Humanos , Animais , Camundongos , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/metabolismo , Infecção Persistente , Linfócitos T CD8-Positivos/metabolismo , Vírus da Coriomeningite Linfocítica , Epigênese Genética , Camundongos Endogâmicos C57BL
5.
Immunity ; 56(1): 207-223.e8, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36580919

RESUMO

Tissue-resident memory CD8+ T (TRM) cells are a subset of memory T cells that play a critical role in limiting early pathogen spread and controlling infection. TRM cells exhibit differences across tissues, but their potential heterogeneity among distinct anatomic compartments within the small intestine and colon has not been well recognized. Here, by analyzing TRM cells from the lamina propria and epithelial compartments of the small intestine and colon, we showed that intestinal TRM cells exhibited distinctive patterns of cytokine and granzyme expression along with substantial transcriptional, epigenetic, and functional heterogeneity. The T-box transcription factor Eomes, which represses TRM cell formation in some tissues, exhibited unexpected context-specific regulatory roles in supporting the maintenance of established TRM cells in the small intestine, but not in the colon. Taken together, these data provide previously unappreciated insights into the heterogeneity and differential requirements for the formation vs. maintenance of intestinal TRM cells.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Linfócitos T CD8-Positivos/metabolismo , Memória Imunológica , Intestino Delgado , Colo
6.
ACS Omega ; 7(45): 41069-41081, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406484

RESUMO

Batch processes are generally characterized by complex dynamics and remarkable data collinearity, thereby rendering the monitoring of such processes necessary but challenging. This paper proposes a data-driven time-slice latent variable correlation analysis-based model predictive fault detection framework to ensure accurate fault detection in dynamic batch processes. The three-way batch process data are first unfolded into the two-way time slice. For each single time slice, process data are mapped to both major latent variables and residual subspaces to deal with the variable-wise data collinearity and extract dominant data information. A measurement status is then determined with a canonical correlation analysis of the major latent variables and correlated variables, using both the time and batch perspectives. Prediction-based residuals are generated, which provide the basis for identifying the property of faults detected, namely, static or dynamic. Based on experiments using a simulated penicillin production and an industrial inject molding process, the proposed monitoring scheme has been proven feasible and effective.

7.
Sci Transl Med ; 14(651): eabn2375, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35767654

RESUMO

Myotonic dystrophy type 1 (DM1) is a multisystem, autosomal-dominant inherited disorder caused by CTG microsatellite repeat expansions (MREs) in the 3' untranslated region of the dystrophia myotonica-protein kinase (DMPK) gene. Despite its prominence as the most common adult-onset muscular dystrophy, patients with congenital to juvenile-onset forms of DM1 can present with debilitating neurocognitive symptoms along the autism spectrum, characteristic of possible in utero cortical defects. However, the molecular mechanism by which CTG MREs lead to these developmental central nervous system (CNS) manifestations is unknown. Here, we showed that CUG foci found early in the maturation of three-dimensional (3D) cortical organoids from DM1 patient-derived induced pluripotent stem cells (iPSCs) cause hyperphosphorylation of CUGBP Elav-like family member 2 (CELF2) protein. Integrative single-cell RNA sequencing and enhanced cross-linking and immunoprecipitation (eCLIP) analysis revealed that reduced CELF2 protein-RNA substrate interactions results in misregulation of genes critical for excitatory synaptic signaling in glutamatergic neurons, including key components of the methyl-CpG binding protein 2 (MECP2) pathway. Comparisons to MECP2(y/-) cortical organoids revealed convergent molecular and cellular defects such as glutamate toxicity and neuronal loss. Our findings provide evidence suggesting that early-onset DM1 might involve neurodevelopmental disorder-associated pathways and identify N-methyl-d-aspartic acid (NMDA) antagonists as potential treatment avenues for neuronal defects in DM1.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Distrofia Miotônica , Adulto , Proteínas CELF/genética , Proteínas CELF/metabolismo , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Organoides/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Expansão das Repetições de Trinucleotídeos
8.
Res Sq ; 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35313591

RESUMO

The COVID-19 pandemic is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The betacoronvirus has a positive sense RNA genome which encodes for several RNA binding proteins. Here, we use enhanced crosslinking and immunoprecipitation to investigate SARS-CoV-2 protein interactions with viral and host RNAs in authentic virus-infected cells. SARS-CoV-2 proteins, NSP8, NSP12, and nucleocapsid display distinct preferences to specific regions in the RNA viral genome, providing evidence for their shared and separate roles in replication, transcription, and viral packaging. SARS-CoV-2 proteins expressed in human lung epithelial cells bind to 4773 unique host coding RNAs. Nine SARS-CoV-2 proteins upregulate target gene expression, including NSP12 and ORF9c, whose RNA substrates are associated with pathways in protein N-linked glycosylation ER processing and mitochondrial processes. Furthermore, siRNA knockdown of host genes targeted by viral proteins in human lung organoid cells identify potential antiviral host targets across different SARS-CoV-2 variants. Conversely, NSP9 inhibits host gene expression by blocking mRNA export and dampens cytokine productions, including interleukin-1α/ß. Our viral protein-RNA interactome provides a catalog of potential therapeutic targets and offers insight into the etiology of COVID-19 as a safeguard against future pandemics.

9.
bioRxiv ; 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35233578

RESUMO

The COVID-19 pandemic is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The betacoronvirus has a positive sense RNA genome which encodes for several RNA binding proteins. Here, we use enhanced crosslinking and immunoprecipitation to investigate SARS-CoV-2 protein interactions with viral and host RNAs in authentic virus-infected cells. SARS-CoV-2 proteins, NSP8, NSP12, and nucleocapsid display distinct preferences to specific regions in the RNA viral genome, providing evidence for their shared and separate roles in replication, transcription, and viral packaging. SARS-CoV-2 proteins expressed in human lung epithelial cells bind to 4773 unique host coding RNAs. Nine SARS-CoV-2 proteins upregulate target gene expression, including NSP12 and ORF9c, whose RNA substrates are associated with pathways in protein N-linked glycosylation ER processing and mitochondrial processes. Furthermore, siRNA knockdown of host genes targeted by viral proteins in human lung organoid cells identify potential antiviral host targets across different SARS-CoV-2 variants. Conversely, NSP9 inhibits host gene expression by blocking mRNA export and dampens cytokine productions, including interleukin-1α/ß. Our viral protein-RNA interactome provides a catalog of potential therapeutic targets and offers insight into the etiology of COVID-19 as a safeguard against future pandemics.

10.
Cell Mol Life Sci ; 79(3): 147, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35195778

RESUMO

In addition to genomic alterations, aberrant changes in post-transcriptional regulation can modify gene function and drive cancer development. RNA-binding proteins (RBPs) are a large class of post-transcriptional regulators that have been increasingly implicated in carcinogenesis. By integrating multi-omics data, we identify LARP1 as one of the most upregulated RBPs in colorectal cancer (CRC) and demonstrate its oncogenic properties. We perform LARP1:RNA interactome profiling and unveil a previously unexplored role for LARP1 in targeting the 3'UTR of oncogenes in CRC. Notably, we identify the proto-oncogenic transcription factor MYC as a key LARP1-regulated target. Our data show that LARP1 positively modulates MYC expression by associating with its 3'UTR. In addition, antisense oligonucleotide-mediated blocking of the interaction between LARP1 and the MYC 3'UTR reduces MYC expression and in vitro CRC growth. Furthermore, a systematic analysis of LARP1:protein interactions reveals IGF2BP3 and YBX1 as LARP1-interacting proteins that also regulate MYC expression and CRC development. Finally, we demonstrate that MYC reciprocally modulates LARP1 expression by targeting its enhancer. In summary, our data reveal a critical, previously uncharacterized role of LARP1 in promoting CRC tumorigenesis, validate its direct regulation of the proto-oncogene MYC and delineate a model of the positive feedback loop between MYC and LARP1 that promotes CRC growth and development.


Assuntos
Autoantígenos/metabolismo , Carcinogênese/metabolismo , Neoplasias Colorretais/metabolismo , Retroalimentação Fisiológica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ribonucleoproteínas/metabolismo , Regiões 3' não Traduzidas , Animais , Autoantígenos/genética , Carcinogênese/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Camundongos , Oncogenes , Ribonucleoproteínas/genética , Transcriptoma/genética , Transfecção , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Antígeno SS-B
11.
Sci Immunol ; 5(50)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826341

RESUMO

Inflammatory bowel disease (IBD) encompasses a spectrum of gastrointestinal disorders driven by dysregulated immune responses against gut microbiota. We integrated single-cell RNA and antigen receptor sequencing to elucidate key components, cellular states, and clonal relationships of the peripheral and gastrointestinal mucosal immune systems in health and ulcerative colitis (UC). UC was associated with an increase in IgG1+ plasma cells in colonic tissue, increased colonic regulatory T cells characterized by elevated expression of the transcription factor ZEB2, and an enrichment of a γδ T cell subset in the peripheral blood. Moreover, we observed heterogeneity in CD8+ tissue-resident memory T (TRM) cells in colonic tissue, with four transcriptionally distinct states of differentiation observed across health and disease. In the setting of UC, there was a marked shift of clonally related CD8+ TRM cells toward an inflammatory state, mediated, in part, by increased expression of the T-box transcription factor Eomesodermin. Together, these results provide a detailed atlas of transcriptional changes occurring in adaptive immune cells in the context of UC and suggest a role for CD8+ TRM cells in IBD.


Assuntos
Colite Ulcerativa/imunologia , Linfócitos Intraepiteliais/imunologia , Células T de Memória/imunologia , Linfócitos T Reguladores/imunologia , Imunidade Adaptativa , Animais , Colo/imunologia , Humanos , Imunoglobulina G/imunologia , Masculino , Camundongos Transgênicos , Análise de Célula Única
12.
Sci Immunol ; 5(47)2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414833

RESUMO

During an immune response to microbial infection, CD8+ T cells give rise to distinct classes of cellular progeny that coordinately mediate clearance of the pathogen and provide long-lasting protection against reinfection, including a subset of noncirculating tissue-resident memory (TRM) cells that mediate potent protection within nonlymphoid tissues. Here, we used single-cell RNA sequencing to examine the gene expression patterns of individual CD8+ T cells in the spleen and small intestine intraepithelial lymphocyte (siIEL) compartment throughout the course of their differentiation in response to viral infection. These analyses revealed previously unknown transcriptional heterogeneity within the siIEL CD8+ T cell population at several stages of differentiation, representing functionally distinct TRM cell subsets and a subset of TRM cell precursors within the tissue early in infection. Together, these findings may inform strategies to optimize CD8+ T cell responses to protect against microbial infection and cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Análise de Sequência de RNA , Análise de Célula Única , Animais , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/imunologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
13.
Nat Methods ; 17(6): 636-642, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32393832

RESUMO

Genetic screens using pooled CRISPR-based approaches are scalable and inexpensive, but restricted to standard readouts, including survival, proliferation and sortable markers. However, many biologically relevant cell states involve cellular and subcellular changes that are only accessible by microscopic visualization, and are currently impossible to screen with pooled methods. Here we combine pooled CRISPR-Cas9 screening with microraft array technology and high-content imaging to screen image-based phenotypes (CRaft-ID; CRISPR-based microRaft followed by guide RNA identification). By isolating microrafts that contain genetic clones harboring individual guide RNAs (gRNA), we identify RNA-binding proteins (RBPs) that influence the formation of stress granules, the punctate protein-RNA assemblies that form during stress. To automate hit identification, we developed a machine-learning model trained on nuclear morphology to remove unhealthy cells or imaging artifacts. In doing so, we identified and validated previously uncharacterized RBPs that modulate stress granule abundance, highlighting the applicability of our approach to facilitate image-based pooled CRISPR screens.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Microscopia Confocal/métodos , Estresse Oxidativo/genética , RNA Guia de Cinetoplastídeos/genética , Proteínas de Ligação a RNA/genética , Análise Serial de Tecidos/métodos , Sistemas CRISPR-Cas/genética , Citoplasma/metabolismo , Humanos , Aprendizado de Máquina , Agregados Proteicos/genética
14.
Nucleic Acids Res ; 46(14): 7323-7338, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29733375

RESUMO

Adenosine DeAminases acting on RNA (ADAR) catalyzes adenosine-to-inosine (A-to-I) conversion within RNA duplex structures. While A-to-I editing is often dynamically regulated in a spatial-temporal manner, the mechanisms underlying its tissue-selective restriction remain elusive. We have previously reported that transcripts of voltage-gated calcium channel CaV1.3 are subject to brain-selective A-to-I RNA editing by ADAR2. Here, we show that editing of CaV1.3 mRNA is dependent on a 40 bp RNA duplex formed between exon 41 and an evolutionarily conserved editing site complementary sequence (ECS) located within the preceding intron. Heterologous expression of a mouse minigene that contained the ECS, intermediate intronic sequence and exon 41 with ADAR2 yielded robust editing. Interestingly, editing of CaV1.3 was potently inhibited by serine/arginine-rich splicing factor 9 (SRSF9). Mechanistically, the inhibitory effect of SRSF9 required direct RNA interaction. Selective down-regulation of SRSF9 in neurons provides a basis for the neuron-specific editing of CaV1.3 transcripts.


Assuntos
Canais de Cálcio Tipo L/genética , Especificidade de Órgãos/genética , Edição de RNA , Fatores de Processamento de Serina-Arginina/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Sequência de Bases , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Regulação da Expressão Gênica , Células HEK293 , Humanos , Rim/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Fatores de Processamento de Serina-Arginina/metabolismo
15.
Cell ; 172(3): 590-604.e13, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29373831

RESUMO

Stress granules (SGs) are transient ribonucleoprotein (RNP) aggregates that form during cellular stress and are increasingly implicated in human neurodegeneration. To study the proteome and compositional diversity of SGs in different cell types and in the context of neurodegeneration-linked mutations, we used ascorbate peroxidase (APEX) proximity labeling, mass spectrometry, and immunofluorescence to identify ∼150 previously unknown human SG components. A highly integrated, pre-existing SG protein interaction network in unstressed cells facilitates rapid coalescence into larger SGs. Approximately 20% of SG diversity is stress or cell-type dependent, with neuronal SGs displaying a particularly complex repertoire of proteins enriched in chaperones and autophagy factors. Strengthening the link between SGs and neurodegeneration, we demonstrate aberrant dynamics, composition, and subcellular distribution of SGs in cells from amyotrophic lateral sclerosis (ALS) patients. Using three Drosophila ALS/FTD models, we identify SG-associated modifiers of neurotoxicity in vivo. Altogether, our results highlight SG proteins as central to understanding and ultimately targeting neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Grânulos Citoplasmáticos/metabolismo , Mapas de Interação de Proteínas , Ribonucleoproteínas/metabolismo , Estresse Fisiológico , Animais , Drosophila melanogaster , Células HEK293 , Células HeLa , Humanos , Neurônios/metabolismo , Transporte Proteico
16.
Mol Cell ; 64(2): 282-293, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27720645

RESUMO

RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins.


Assuntos
Algoritmos , Anotação de Sequência Molecular , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/classificação , RNA/química , Animais , Sítios de Ligação , Núcleo Celular/química , Núcleo Celular/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Expressão Gênica , Ontologia Genética , Células HEK293 , Humanos , Motivos de Nucleotídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Software , Dedos de Zinco
17.
Sci Rep ; 6: 30896, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27485310

RESUMO

Hypoplastic left heart syndrome (HLHS) is a fatal congenital heart disease in which the left side of the heart is underdeveloped, impairing the systemic circulation. Underdeveloped left ventricle exerts biomechanical stress on the right ventricle that can progress into heart failure. Genome-wide transcriptome changes have been identified at early stages in the right ventricle (RV) of infants with HLHS, although the molecular mechanisms remain unknown. Here, we demonstrate that the RNA binding protein Rbfox2, which is mutated in HLHS patients, is a contributor to transcriptome changes in HLHS patient RVs. Our results indicate that majority of transcripts differentially expressed in HLHS patient hearts have validated Rbfox2 binding sites. We show that Rbfox2 regulates mRNA levels of targets with 3'UTR binding sites contributing to aberrant gene expression in HLHS patients. Strikingly, the Rbfox2 nonsense mutation identified in HLHS patients truncates the protein, impairs its subcellular distribution and adversely affects its function in RNA metabolism. Overall, our findings uncover a novel role for Rbfox2 in controlling transcriptome in HLHS.


Assuntos
Processamento Alternativo , Códon sem Sentido , Síndrome do Coração Esquerdo Hipoplásico/patologia , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Humanos , Síndrome do Coração Esquerdo Hipoplásico/genética , Síndrome do Coração Esquerdo Hipoplásico/metabolismo , Recém-Nascido , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...