Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(26): 11363-11375, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38900148

RESUMO

Surface-active organics lower the aerosol surface tension (σs/a), leading to enhanced cloud condensation nuclei (CCN) activity and potentially exerting impacts on the climate. Quantification of σs/a is mainly limited to laboratory or modeling work for particles with selected sizes and known chemical compositions. Inferred values from ambient aerosol populations are deficient. In this study, we propose a new method to derive σs/a by combining field measurements made at an urban site in northern China with the κ-Köhler theory. The results present new evidence that organics remarkably lower the surface tension of aerosols in a polluted atmosphere. Particles sized around 40 nm have an averaged σs/a of 53.8 mN m-1, while particles sized up to 100 nm show σs/a values approaching that of pure water. The dependence curve of σs/a with the organic mass resembles the behavior of dicarboxylic acids, suggesting their critical role in reducing the surface tension. The study further reveals that neglecting the σs/a lowering effect would result in lowered ultrafine CCN (diameter <100 nm) concentrations by 6.8-42.1% at a typical range of supersaturations in clouds, demonstrating the significant impact of surface tension on the CCN concentrations of urban aerosols.


Assuntos
Aerossóis , Atmosfera , Tamanho da Partícula , Tensão Superficial , Atmosfera/química , Poluentes Atmosféricos/análise , China
2.
J Environ Manage ; 363: 121287, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843733

RESUMO

Despite concerted efforts in emission control, air pollution control remains challenging. Urban planning has emerged as a crucial strategy for mitigating PM2.5 pollution. What remains unclear is the impact of urban form and their interactions with seasonal changes. In this study, base on the air quality monitoring stations in the Yangtze River Delta urban agglomeration, the relationship between urban spatial indicators (building morphology and land use) and PM2.5 concentrations was investigated using full subset regression and variance partitioning analysis, and seasonal differences were further analysed. Our findings reveal that PM2.5 pollution exhibits different sensitivities to spatial scales, with higher sensitivity to the local microclimate formed by the three-dimensional structure of buildings at the local scale, while land use exerts greater influence at larger scales. Specifically, land use indicators contributed sustantially more to the PM2.5 prediction model as buffer zone expand (from an average of 2.41% at 100 m range to 47.30% at 5000 m range), whereas building morphology indicators display an inverse trend (from an average of 13.84% at 100 m range to 1.88% at 5000 m range). These results enderscore the importance of considering building morphology in local-scale urban planning, where the increasing building height can significantly enhance the disperion of PM2.5 pollution. Conversely, large-scale urban planning should prioritize the mixed use of green spaces and construction lands to mitigate PM2.5 pollution. Moreover, the significant seasonal differences in the ralationship between urban spatical indicatiors and PM2.5 pollution were observed. Particularly moteworthy is the heightened association between forest, water indicators and PM2.5 concentrations in summer, indicating the urban forests may facilitate the formation of volatile compunds, exacerbating the PM2.5 pollution. Our study provides a theoretical basis for addressing scale-related challenges in urban spatial planning, thereby forstering the sustainable development of cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Rios , Estações do Ano , Material Particulado/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Rios/química , China , Urbanização
3.
Sci Total Environ ; 803: 150010, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487897

RESUMO

This study investigates the impact of aerosol liquid water content (ALWC) and related factors, i.e., relative humidity (RH), aerosol mass concentration (PM2.5), and aerosol hygroscopicity, on aerosol optical properties, based on field measurements made in the Pearl River Delta (PRD) region of China at the surface (1 November 2019 to 21 January 2020) and in the upper boundary layer (the 532-m Guangzhou tower from 1 February to 21 March 2020). In general, temporal variations in the ambient aerosol backscattering coefficient (ßp) and ALWC followed each other. However, the surface ßp and 532-m ßp had generally opposite diurnal variation patterns, caused by dramatic differences in PM2.5 and ambient RH between the surface and the upper boundary layer. The ambient 532-m RH was systematically higher than the surface RH, with the latter having a much pronounced diurnal cycle than the former. The surface PM2.5 concentration was systematically higher than the PM2.5 concentration at 532 m, and their diurnal cycle patterns were overall opposite. These dramatic differences reveal that the atmospheric variables, i.e., ambient RH and the PM2.5 concentration in the upper boundary layer, cannot be directly represented by the same variables at the surface. Vertical variability should be considered. Clear differences in the sensitivities of aerosol light scattering to ambient RH, PM2.5, and aerosol hygroscopicity between the two levels were found and examined. Aerosol chemical composition played a minor role in causing the differences between the two levels. In particular, ßp was more sensitive to PM2.5 at the surface level but more to the ambient RH in the upper boundary layer. The larger contribution of aerosol loading to the variability in ßp at the surface implies that local emission controls can decrease ßp and further improve atmospheric visibility effectively at the surface during winter in the PRD region.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Umidade , Material Particulado/análise , Molhabilidade
4.
Natl Sci Rev ; 8(3): nwaa157, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34691590

RESUMO

A new mechanism of new particle formation (NPF) is investigated using comprehensive measurements of aerosol physicochemical quantities and meteorological variables made in three continents, including Beijing, China; the Southern Great Plains site in the USA; and SMEAR II Station in Hyytiälä, Finland. Despite the considerably different emissions of chemical species among the sites, a common relationship was found between the characteristics of NPF and the stability intensity. The stability parameter (ζ = Z/L, where Z is the height above ground and L is the Monin-Obukhov length) is found to play an important role; it drops significantly before NPF as the atmosphere becomes more unstable, which may serve as an indicator of nucleation bursts. As the atmosphere becomes unstable, the NPF duration is closely related to the tendency for turbulence development, which influences the evolution of the condensation sink. Presumably, the unstable atmosphere may dilute pre-existing particles, effectively reducing the condensation sink, especially at coarse mode to foster nucleation. This new mechanism is confirmed by model simulations using a molecular dynamic model that mimics the impact of turbulence development on nucleation by inducing and intensifying homogeneous nucleation events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA