Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Autism ; 15(1): 14, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570876

RESUMO

BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.


Assuntos
Transtorno Autístico , Animais , Camundongos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Hipotálamo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo
2.
Front Nutr ; 10: 1278906, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37899828

RESUMO

Background: Dysregulation of feeding behavior leads to a variety of pathological manifestations ranging from obesity to anorexia. The foraging behavior of animals affected by food deficiency is not fully understood. Methods: Home-Cage system was used to monitor the behaviors. Immunohistochemical staining was used to monitor the trend of neuronal activity. Chemogenetic approach was used to modify neuronal activity. Results: We described here a unique mouse model of foraging behavior and unveiled that food deprivation significantly increases the general activities of mice with a daily rhythmic pattern, particularly foraging behavior. The increased foraging behavior is potentiated by food cues (mouthfeel, odor, size, and shape) and energy deficit, rather than macronutrient protein, carbohydrate, and fat. Notably, energy deficiency increases nocturnal neuronal activity in paraventricular hypothalamic nucleus (PVH), accompanying a similar change in rhythmic foraging behavior. Activating neuronal activity in PVH enhances the amplitude of foraging behavior in mice. Conversely, inactivating neuronal activity in PVH decreases the amplitude of foraging behavior and impairs the rhythm of foraging behavior. Discussion: These results illustrate that energy status and food cues regulate the rhythmic foraging behavior via PVH neuronal activity. Understanding foraging behavior provides insights into the underlying mechanism of eating-related disorders.

3.
Chem Commun (Camb) ; 59(76): 11385-11388, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37667576

RESUMO

A Sc(OTf)3 catalyzed intramolecular cyclization reaction of 2-alkyl-1,4-benzoquinone derived from D-A cyclopropane was discovered. This reaction involves single-electron transfer, proton-transfer, an aromatization driven spin center shift, and radical coupling processes, and offers an efficient method for the synthesis of 6-chromanols from D-A cyclopropanes.

4.
Obesity (Silver Spring) ; 30(11): 2242-2255, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321273

RESUMO

OBJECTIVE: Elevation of energy expenditure through an increase of brown adipose tissue (BAT) thermogenesis is regarded as one of the most promising ways to prevent obesity development. The preoptic area (POA) of the hypothalamus is a critical area for control of BAT thermogenesis. However, the intracellular signaling cascades in the POA for regulation of BAT thermogenesis are poorly understood. METHODS: Phosphorylation proteomics (phosphoproteomics) and bioinformatics approaches were used to disclose numerous hypothalamic signaling pathways involved in the regulation of BAT thermogenesis. Conditional manipulation of the p38α gene in mouse POA was performed by stereotaxic injection of adeno-associated virus 9 vector to explore the role of p38α in BAT thermogenesis. RESULTS: Multiple hypothalamic signaling pathways were triggered by cold exposure, especially the mitogen-activated protein kinase (MAPK) signaling pathway. The p38α activation, but not extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH2-terminal kinase (JNK), in the hypothalamus was significantly decreased during cold exposure. p38α deficiency in the POA dramatically elevated energy expenditure owing to a marked increase in BAT thermogenesis, resulting in significantly decreased body weight gain and fat mass. Overexpression of p38α in the POA led to a dramatic increase in weight gain. CONCLUSIONS: These results demonstrate that p38α in the POA exacerbates obesity development, at least in part owing to a decrease in BAT thermogenesis.


Assuntos
Tecido Adiposo Marrom , Área Pré-Óptica , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Área Pré-Óptica/metabolismo , Termogênese/fisiologia , Obesidade/metabolismo , Metabolismo Energético/fisiologia , Aumento de Peso
5.
J Healthc Eng ; 2021: 6127894, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394894

RESUMO

Good sleep quality is essential, especially for clinical users. Sleep disorders not only impair the success rate of treatment but also delay recovery. They can seriously interfere with treatment outcomes and even endanger a user's life. In this study, we created a smart mattress containing 10 × 18 air packs and control units. Each air pack contains a set of pressure and height sensors and two air valves. Each row control unit can detect and adjust the pressure and height of each air bag in the row. When the bed body is turned on, it automatically initializes, adjusts the state of each air bag to the same height and pressure, and enters a slow scanning state. When perceived objects or people are lying on the bed, the bed automatically perceives the human body structure and body pressure matrix, increases the scanning speed for more timely and accurate measurements of the digital matrix and forming pressure by matrix-normalized processing, and then uses local pressure variance detection to automatically adjust to the sleeping position of the human body and thus achieve a uniform force distribution and a comfortable state. Finally, pressure matrix binarization was used to match sleeping position templates to identify the best template for automatic recognition of the sleeping position. The experimental results show that the sleeping position recognition method has high accuracy, recall, and precision. Our mattress is designed with interfaces for external devices. In future research, the smart mattress can connect to an auxiliary part of a smart ecosystem consisting of a smart pill box, a smart lighting system, and a microclimate system, which is expected to yield a more comprehensive intelligent ward to explore the possibility of improving sleep quality.


Assuntos
Ecossistema , Qualidade do Sono , Leitos , Estudos de Viabilidade , Humanos , Sono
6.
Biochem Biophys Res Commun ; 525(4): 915-920, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171529

RESUMO

Affective disorders are a set of mental disorders and particularly disrupt the mental health of susceptible women during puberty, pregnancy, parturition and menopause transition, which are characterized by dramatic changes in reproductive hormone profiles. The serum FSH level changes significantly during these periods; yet, the role of FSH in mood regulation is poorly understood. In the current study, FSHR knockout (Fshr-/-) mice displayed enhanced affective disorder behaviors in an open field test and a forced swim test, accompanied by altered gene expression profiles. The differentially expressed genes between Fshr-/- mice and Fshr+/+ mice were enriched in multiple neuroendocrine metabolic pathways. FSHR deletion significantly increased/decreased the mRNA and/or protein expression levels of AOX1, RDH12, HTR3a and HTR4 in mood-mediating brain regions, including the hippocampus and prefrontal cortex. These results reveal that FSH signaling is involved in the development of affective disorders.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Hipocampo/fisiologia , Transtornos do Humor/metabolismo , Córtex Pré-Frontal/fisiologia , Receptores do FSH/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aldeído Oxidase/genética , Aldeído Oxidase/metabolismo , Animais , Comportamento Animal , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos do Humor/genética , Receptores do FSH/genética , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...