Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 107(4): 1044-1053, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36089682

RESUMO

Soilborne pathogens destabilize the yields of Triticeae crops, including barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). Although genetic resistance derived from relatives of these species has been utilized to prevent rust diseases (i.e., in the wheat-rye 1BL-1RS translocation line), research on resistance against soilborne pathogens remains limited. Here, we performed field trials using 76 genotypes representing 28 Hordeum, six Triticum, and two Aegilops species to examine resistance against three soilborne bymoviruses: barley yellow mosaic virus (BaYMV), barley mild mosaic virus (BaMMV), and wheat yellow mosaic virus (WYMV). We also performed greenhouse tests using the soilborne fungal pathogen Fusarium pseudograminearum, which causes Fusarium crown rot (FCR). Using RT-PCR, we detected BaMMV and BaYMV in several Hordeum species, whereas WYMV induced systemic infection in the Triticum and Aegilops species. The identification of FCR susceptibility in all species examined suggests that F. pseudograminearum is a facultative fungal pathogen in Triticeae. Intraspecies variation in FCR disease severity was observed for several species, pointing to the possibility of exploring host resistance mechanisms. Therefore, by unlocking the host specificity of four soilborne pathogens in Hordeum species and their relatives, we obtained insights for the further exploration of wild sources of soilborne pathogen resistance for future wheat and barley improvement programs.


Assuntos
Hordeum , Hordeum/microbiologia , Especificidade de Hospedeiro , Genótipo , Triticum/microbiologia
2.
Front Plant Sci ; 13: 1012939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407596

RESUMO

Leymus mollis (Trin.) Pilg. (2n = 4x = 28, NsNsXmXm) potentially harbours useful genes that might contribute to the improvement of wheat. We describe M862 as a novel wheat-L. mollis alien disomic substitution line from a cross between wheat cv. 7182 and octoploid Tritileymus M47. Cytological observations indicate that M862 has a chromosome constitution of 2n = 42 = 21II. Two 4D chromosomes of wheat substituted by two L. mollis Ns chromosomes were observed, using the GISH and ND-FISH analyses. Molecular marker, 55K SNP array and wheat-P. huashanica liquid array (GenoBaits®WheatplusPh) analyses further indicate that the alien chromosomes are L. mollis 4Ns. Therefore, it was deduced that M862 was a wheat-L. mollis 4Ns(4D) alien disomic substitution line. There were also changes in chromosomes 1A, 1D, 2B and 5A detected by ND-FISH analysis. Transcriptome sequencing showed that the structural variation of 1D, 1A and 5A may have smaller impact on gene expression than that for 2B. In addition, a total of 16 markers derived from Lm#4Ns were developed from transcriptome sequences, and these proved to be highly effective for tracking the introduced chromosome. M862 showed reduced height, larger grains (weight and width), and was highly resistance to CYR32 and CYR34 stripe rust races at the seedling stage and mixed stripe rust races (CYR32, CYR33 and CYR34) at the adult stage. It was also resistance to Fusarium head blight (FHB). This alien disomic substitution line M862 may be exploited as an important genetic material in the domestication of stipe rust and FHB resistance wheat varieties.

3.
Plant Commun ; 3(4): 100317, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35605197

RESUMO

Barley is a diploid species with a genome smaller than those of other members of the Triticeae tribe, making it an attractive model for genetic studies in Triticeae crops. The recent development of barley genomics has created a need for a high-throughput platform to identify genetically uniform mutants for gene function investigations. In this study, we report an ethyl methanesulfonate (EMS)-mutagenized population consisting of 8525 M3 lines in the barley landrace "Hatiexi" (HTX), which we complement with a high-quality de novo assembly of a reference genome for this genotype. The mutation rate within the population ranged from 1.51 to 4.09 mutations per megabase, depending on the treatment dosage of EMS and the mutation discrimination platform used for genotype analysis. We implemented a three-dimensional DNA pooling strategy combined with multiplexed amplicon sequencing to create a highly efficient and cost-effective TILLING (targeting induced locus lesion in genomes) platform in barley. Mutations were successfully identified from 72 mixed amplicons within a DNA pool containing 64 individual mutants and from 56 mixed amplicons within a pool containing 144 individuals. We discovered abundant allelic mutants for dozens of genes, including the barley Green Revolution contributor gene Brassinosteroid insensitive 1 (BRI1). As a proof of concept, we rapidly determined the causal gene responsible for a chlorotic mutant by following the MutMap strategy, demonstrating the value of this resource to support forward and reverse genetic studies in barley.


Assuntos
Hordeum , Metanossulfonato de Etila/farmacologia , Hordeum/genética , Mutagênese , Mutação , Genética Reversa
5.
Int J Biol Macromol ; 195: 217-228, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896470

RESUMO

Leaf angle, including leaf petiole angle (LPA) and leaf blade angle (LBA), is an important trait affecting plant architecture. Anaphase-promoting complex/cyclosome (APC/C) genes play a vital role in plant growth and development, including regulation of leaf angle. Here, we identified and characterized the APC genes in Upland cotton (G. hirsutum L.) with a focus on GhAPC8, a homolog of soybean GmILPA1 involved in regulation of LPA. We showed that independently silencing the At or Dt sub-genome homoeolog of GhAPC8 using virus-induced gene silencing reduced plant height and LBA, and that reduction of LBA could be caused by uneven growth of cortex parenchyma cells on the adaxial and abaxial sides of the junction between leaf blade and leaf petiole. The junction between leaf blade and leaf petiole of the GhAPC8-silenced plants had an elevated level of brassinosteroid (BR) and a decreased levels of auxin and gibberellin. Consistently, comparative transcriptome analysis found that silencing GhAPC8 activated genes of the BR biosynthesis and signaling pathways as well as genes related to ubiquitin-mediated proteolysis. Weighted gene co-expression network analysis (WGCNA) identified gene modules significantly associated with plant height and LBA, and candidate genes bridging GhAPC8, the pathways of BR biosynthesis and signaling and ubiquitin-mediated proteolysis. These results demonstrated a role of GhAPC8 in regulating LBA, likely achieved by modulating the accumulation and signaling of multiple phytohormones.


Assuntos
Subunidade Apc8 do Ciclossomo-Complexo Promotor de Anáfase/genética , Subunidade Apc8 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Gossypium/genética , Folhas de Planta/genética , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes , Genes de Plantas , Gossypium/metabolismo , Hormônios , Fenótipo , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transcriptoma/genética
6.
Plant Dis ; 104(4): 1231-1238, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32065563

RESUMO

Powdery mildew, which is caused by Blumeria graminis f. sp. tritici (Bgt), is a disease of wheat worldwide. Xiaobaidong is a Chinese wheat landrace, which still maintains good resistance against powdery mildew. To obtain more genetic markers closely linked to the powdery mildew resistance gene mlxbd and narrow the candidate region for its isolation, new simple sequence repeats and cross intron-spanning markers were designed based on the genome sequence of Triticum aestivum cultivar Chinese Spring chromosome 7BL. The flanking markers 7BLSSR49 and WGGC5746 were found to be tightly linked to mlxbd at genetic distances of 0.4 cM and 0.3 cM, respectively. The resistance locus was mapped to a 63.40 kb and 0.29 Mb region of the Chinese Spring genome and Zavitan genome, respectively. The linked markers of mlxbd could be used as diagnostic markers for mlxbd. The linked molecular markers and delineated genomic region in the sequenced Chinese Spring genome will assist the future map-based cloning of mlxbd.


Assuntos
Resistência à Doença , Triticum , Mapeamento Cromossômico , Genes de Plantas , Humanos , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...